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Abstract: The present paper is concerned with the problem of reflection of homogeneous plane waves from the 

free surface of a generalized magneto thermoelastic half-space. The phase speeds of corresponding to longitudinal, 

transverse and thermal waves are obtained and are independent of angle of propagation. The amplitude and energy 

ratios corresponding to the reflected waves are obtained theoretically and numerically with the help of boundary 

conditions. The effects of magnetic and thermal parameters on the reflected waves are examined. The results hold 

the conservation law of energy. 
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1. Introduction 
 

The coupled theory of thermoelasticity introduced by Biot [1] enables to eliminate the paradox that the elastic 

changes have no effect on temperature. This theory gives infinite phase speeds for heat waves which is different 

from the reality. Lord and Shulman [2] introduced the concept of relaxation time and the acceleration of heat flux 

in the generalized theory of thermoelas-ticity thereby representing finite phase speeds for the heat waves. Green 

and Lindsay [3] used entropy production inequality proposed by Green and Laws [4] to present an alternate gener-

alized thermoelastic theory. These theories have been established using modifying Fourier’s heat conduction 

equation or correcting the energy equation and Neuman-Duhamel relation. McCarthy [5] obtained two purely 

mechanical transverse and two longitudinal waves in gener-alized theromoelastic continuum. He presented the 

governing equations for the propagation of acceleration waves of arbitrary shape and strength. Nowacki [6] 

discussed different problems of thermoelasticity and gave the Duhamel-Newmann relations for an anisotropic 

body. Green and Naghdi [7, 8] also explained thermoelastic theory using the concept of the propagation of heat 

as like a wave. Youssef [9] proposed a new thermoelasticity theory considering the heat conduction equation with 

fractional order and proved the uniqueness theorem. 

Paria [10] discussed the interacting effects of applied magnetic field in the theories of magneto-elasticity and 

magneto-thermo-elasticity of a solid body. Chaudhuri and Debnath [11] investi-gated the propagation of plane 

harmonic waves in an infinite conducting thermo-elastic solid permeated by a primary uniform magnetic field 

when the entire elastic medium is rotating with a uniform angular velocity. Sharma and Chand [12] studied the 

problem of distribution of deformation, temperature and magnetic field in the generalized magneto thermoelastic 

half-space. Massalas [13] discussed the magnetothermoelastic interactions in ferromagnetic mate-rial in the 

generalized theory of thermoelasticity. Sherief and Helmy [14] attempted the two dimensional problem of electro-

magneto-thermoelastic material with thermal relaxation and obtained the distributions of temperature, 

displacement, stress, magnetic and electric fields. Wang and Dai [15] used the finite Hankle integral 
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transformation to obtain the expressions for magnetothermodynamic stress and perturbation response of magnetic 

field in the orthotropic cylinder. Ezzat and Elall [16] introduced the modified Ohm’s law, the temperature gradient 

and charge density effects in the linear theory of generalized magneto thermoelasticity and obtained the kinematic 

variables using normal mode analysis. Sarkar and Lahiri [17] used the normal mode analysis and eigenvalue 

approach techniques to obtain the kinematic variables in the three dimensional thermoelastic problem without 

energy dissipation. 

The subject of wave and vibrations in different elastic continuum has been a matter of concern for many 

researchers since long. It is used in various field like in the exploration of mines and petroleum, earthquake 

engineering, Seismology, Geophysics, etc. More specific, wave phenom-ena in thermoelasticity materials has 

wide applications in engineering. Othman and Song [18] studied the reflection of plane waves from an isotropic 

magneto-thermoelastic rotating half space and obtained the reflection coefficients of the reflected waves. Lotfy et 

al. [19] discussed the problem of the magnetic and rotational effects on a fiber-reinforced thermoelastic solid 

based on two coupled thermoelastic theory with gravitational effect using normal mode analy-sis. Zoramuana and 

Singh [20] introduced the magnetic and rotational effects on the propogation of waves in transversly isotropic 

fiber-reinforced thermoelastic material with the help of Lord Shulman theory. Kumar and Tomar [21] investigated 

the effect of induced electric field due to applied magnetic field on the reflection and transmission coefficients of 

the elastic waves in the half-spaces of magneto-elastic materials with voids. Abo-Daheb [22] solved the governing 

equation of generalized magneto thermoelastic materials using Lame’s potentials method in the context of 

classical dynamical and Lord-S ḩulman theories. Othman and Kumar [23] pre-sented the model equations of 

generalized magneto-thermoelasticity in an isotropic perfectly conducting elastic medium. This model is applied 

to four theories of the generalized thermoe-lasticity: Lord-Shulman, Green-Naghdi theory, Chandrasekharaiah-

Tzou theory and coupled theory. Abd-Alla et al. [24] studied the problem of reflection of plane harmonic waves 

from a semi-infinite elastic solid under the effect of magnetic field and obtained the reflection co-efficient of the 

reflected waves. The problems related with wave propagation in different thermoelas-tic materials have been 

studied since long and they are in open literature, i.e., Ben-Menahem and Singh [25], Hetnaski and Ignaczak [26], 

Ezzat et al. [27], Ezzat [28], Othman [29], Ezzat and Youssef [30], Dai and Wang [31], Singh [32], Othman and 

Lotfy [33], Singh [34], Sarkar [35], Sarkar and De [36], Singh et al. [37], Dhaliwal and Sherief [38], Youssef [39], 

Ignaczack [40], Abbas and Youssef [41], Abbas et al.[42], Abo-Daheb and Lotfy [43] Abbas [44] and Yu et al. 

[45]. 

In the present work, we are concerned with the magnetic and thermal effects on the reflected waves in 

generalized magneto thermoelastic materials. The phase velocities corresponding to longitudinal, transverse and 

thermal waves are obtained. The amplitude and energy ratios are derived analytically and computed numerically. 

We verify our results through the conservation law of energy and known results of Achenbach [46]. The paper is 

structured starting with introduction which discusses the various aspect of the problem and review of literature. It 

is followed by the section 2 which is basic equation and it discusses the constitutive relation and governing 

equations of the problem. Section 3 is the wave propagation consisting of the solution of governing equation. 

Section 4 is appropriate boundary conditions and it contains the derivation of amplitude ratios. The partition of 

energy in Section 5 discusses the energy distribution among the incident and reflected waves. Special cases of the 

problem is discussed in Section 6. The numerical discussion consists the numerical results of the phase velocity, 

amplitude and energy ratios in Section 7. The findings of the paper is given in the section 8 as conclusion of the 

problem. 

 

2. Basic Equations 
 

The Maxwell’s equations corresponding to linear electrodynamics for a homogeneous, thermally and 

electrically conducting elastic solid are given by Ezzat and Ellal [16] 

e 0 0
curl  =  + ,  curl  = , div 0, div ,  ,  = .  − = = =h J D E B B D B H D E  (1) 

The modified Ohm’s law for finite conductivity is 

0 0 0
 = [  ] ,T  +  − J E u H  (2) 

 
Symbols Symbols 

λ, µ Lame’s constants ρ density 

Ce specific heat t time 

T absolute temperature T0 reference temperature 

τij Maxwell’s tensor σij stress tensor 

eij strain tensor ui displacement component 
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κ thermal conductivity J current density 

µ0 magnetic permeability ϵ0 electric permeability 

τ relaxation time ∑ cubical dilatation 

αT linear thermal expansion H magnetic intensity 

H0 initial magnetic field D electric displacement 

E induced electric field h induced magnetic field 

σ0 electric conductivity Fi Lorentz’s force 

δij Kronecker’s delta γ (3λ + 2µ)αT 

ϵ1 γ2T0/ρCe(λ + 2µ) α 
µ0

2

0
H /(λ + 2µ) 

β1 σ0µ0/η ϵ2 2

1
c /c2 

η ρCe/κ β2 (λ + 2µ)/µ 

2

1
c  

(λ + 2µ)/ρ 2

2
c  


 

θ0 incident angle θi reflected angle (i = 1,2,3) 

c2 1/µ0ϵ0 ω angular frequency 

Ji components of current density Ei components of electric field 

u displacement B magnetic field 

 

Table 1. Nomenclature 

 

where κ0 is the coefficient connecting the temperature gradient and the electric current density. The constitutive 

relations for the theory of generalized magneto thermoelastic continua are 

ˆ2 ,
ij ij ij ij

e e T    = + −  (3) 

0
(

ij i j j i k k ij
H h H h H h  = + −  (4) 

where 

0 , ,

0

1
, 1, ( ), ( , , 1, 2, 3).

2
ij i j j i

T
T T T e u u i j k

T
= − = + =  

The equation of motion in the absence of body force and heat source for linearly homogeneous magneto 

thermoelastic materials are 

,
,

ij j i i
F u + =  (5) 

where 
0
( )

i i
F = J H . 

The heat conduction equation for such a medium is 

0
, ( , , ) ( , , ),
ii e t tt t tt

T C T T T    = + + +   (6) 

where 
1 2

u u

x y

 
 = +

 
. 

We consider a two dimensional problem in xy-plane of the Cartesian system so that 
1 2

( , , 0)
i

u u u=  and 

0

z





. The stress tensors are given by 

( )11 1, 2, 22 2, 1, 12 1, 2,
( 2 ) , ( 2 ) , .

x y y x y x
u u T u u T u u           = + + − = + + − = +  (7) 

The components of magnetic intensity vector in the medium are represented by 

( )1 2 3 0
0, 0, , , .H H H H h x y t= = = +  

The current density J is parallel to induced electric field E. Thus, the linearized components of J after 

using (2) are given by 

2

1 0 1 0 0 0
,

u T
J E H

t x
  

  
= + − 

  
 (8) 

1

2 0 2 0 0 0 3
, 0.

u T
J E H J

t y
  

  
= + − = 

  
 (9) 

Equations (1) and (2) give the following three equations 
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2 1

0 1 0 0 0 0
,

u Eh T
E H

y t x t
   

   
= + − + 

    
 (10) 

1 2

0 2 0 0 0 0
,

u Eh T
E H

x t y t
   

   
= − − + − 

    
 (11) 

1 2

0
.

E E h

y x t


  
− =

  
 (12) 

Using Equations (8) and (9), we get 

1 2

1 0 0 0 2 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 3
, , 0.

u uT T
F H E H H F H E H H F

t y t x
         

     
= − − = − + + =   

      

 (13) 

Putting the values of σij and Fi in Eqs. (7) and (13) into (5), we get 

( )
2

2 1 1

1 0 0 0 2 0 0 0 0 0 2
   = ,

     
+ +  − + − − 

     

u uT T
u H E H H u

x x t y t
          (14) 

( )
2

2 2 2

2 0 0 0 1 0 0 0 0 0 2
   = .

     
+ +  − − + + 

     

u uT T
u H E H H u

y y t x t
          (15) 

The following non-dimensional variables are used 

2 2

1 1 1 1 1 2 1 2 1 1
' ,  ' ,  ' ,  ' ,  ' ,  ' ,  ,

2
= = = = = = =

+

T
x c x y c y u c u u c u t c t c

u


       


 

' 0 0

02

0 0 0 0 0 0 1

,  ' ,  ' ,  ' .= = = =
ij i

ij i

E Hh
h E

H H c

   
 

     
 

Using these non-dimensional terms, in the equations of motion are represented by 

( ) ( )2 2 2 2 2 2

1 0 1 1 2 1, 1,
1 , , , ,−  + − − + − =

x x y t tt
u E u u           (16) 

( ) ( )2 2 2 2 2 2

2 0 1 1 1 2, 2,
1 , , , ,−  + − + − + =

y y x t tt
u E u u           (17) 

( ) ( )2

, , 1 , ,
. = + +  + 

t tt t tt
      (18) 

 

 

3. Wave Propagation 
 

For a plane harmonic wave, the displacement components and temperature field which are the solution of 

Eqs. (16)–(18) take the following form(see Ben-Menahem and Singh [25]) 

   
( ) 0 0ι sin cos

, , , , ,
wt k x y

u v A B C e
 


− +

=  (19) 

where A, B, C are amplitudes, k is dimensionless complex wavenumber, ω is dimensionless angular frequency. If 

we take k = ℛ +ιℐ, then ℛ(k) and ℐ(k) denote the real and imaginary parts of k respectively. For the existence of 

waves in real: 

ℛ(k) > 0, ℐ(k) ≤ 0. 

It may be noted that the phase speed of the wave will be represented by 
𝜔

ℛ(𝑘)
, while ℐ(k) gives attenuation 

coefficient. 

Using Eqs. (16)–(19), we get 

( )2 2

11 12 11 11
0,k a a A k b B kc C+ + + =  (20) 

( )2 2

11 21 12 21
0,k b A k b a B kc C+ + + +  (21) 

( )2

3 3 0
0,ka A kb B k C+ + + =  (22) 

where 

( ) ( ) ( )2 2 2 2 2 2

11 0 0 12 1 0 0 1 11 0 0
sin cos ,  ,  sin cos 1 ,a a H b          = − + = − + = −  
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( ) ( ) ( )2 2 2 2 2

11 0 0 0 21 0 0 21 0 0 0
sin cos ,  sin cos ,  cos sin ,c b c          = + = − + = −  

2

3 1 0 0 3 1 0 0 0
sin ,  cos ,  .a b        = − = − = −  

The non-singular solutions of Eqs. (20)–(22) give 
6 4 2

0 1 2 3
0,k g k g k g g+ + + =  (23) 

where 
2 2 2

0 21 11 11 2 12 11 0 21 0 12 12 3 21 21 11 3 12 3 12 0
,  ,  ,g b a b g a a b a a b c a c a a g a  = − = + + − − =  

2

1 12 0 11 11 12 3 21 11 21 12 11 0 11 3 21 11 3 11 3 21 11
.g b a a a b c a b a b b a c c b b a b c = + − + − + + −  

If V1, V2 and V3 are the phase velocities corresponding to longitudinal, transverse and thermal waves 

respectively, then these values will satisfy Eq. (23) and V1 > V2 > V3. 

We consider a generalized magneto-thermoelastic half-space, (x ≥ 0) with a constant mag-netic intensity, H 

= (0, 0, H0) which acts parallel to the bounding plane. The full form of displacement components and temperature 

field are given by 

( ) ( )
( ) 

( )
( ) 0 0 0

3
sin cos sin cos

1 2 0 0 0

1

, , 1, , 1, , ,
i i iwt k x y wt k x y

i i i

i

u u f r A e f r A e
     


− + − −

=

= +  (24) 

where Ai is amplitude constant, fi and ri are the coupling parameters whose expressions are given below 

( ) ( )

( ) 

2 2 2 2

0 3 21 12 3 3 11 21 3 3 3 3 12 3 3 21

0 2 2 2

3 0 21 12 3 21

,
( )

i i i i i

i i i

k k a b a a k b b k b a b a b a a b k c
f

b k k b a k b c





+ + − − − +
=

+ + −
 

( ) ( )

( ) 

2 2 2 2

0 3 21 12 3 3 11 21 3 3 3 3 12 3 3 21

2 2 2

3 0 21 12 3 21

,
( )

i i i i i

i

i i i

k k a b a a k b b k b a b a b a a b k c
f

b k k b a k b c





+ + − − − +
= −

+ + −
 

( )

( ) ( )

( )

( ) ( )

3 2 3 2

3 11 3 21 12 3 11 3 21 12

0 2 2 2 2 2 2

0 21 12 3 21 0 21 12 3 21

,  .
i i i i i i

i

i i i i i i

k b b k a k b a k b b k a k b a
r r

k k b a k b c k k b a k b c 

+ + − +
= − =

+ + + + + −
 

The Snell’s law, for the problem, is given by 

( )0 0
sin sin ,  1, 2, 3 .

i i
k k i = =  (25) 

 

4. Appropriate Boundary Conditions 
 

The normal and tangential stress tensors and gradient of temperature field at y = 0 vanish. These conditions 

may be written as (i) σ22+τ22 = 0, (ii) σ21 +τ21 = 0 and (iii)Temperature gradient=0 at y = 0 which can be written as 

( ) ( )2 2 2 2 2

0 0 1, 0 0 2,
2 0,

x y
H u H u     + − + + − =  (26) 

1 2 0,  0.
u u

y x y

  
+ = =

  
 (27) 

Using Eqs. (24) and (25) into (26) and (27), we get a matrix equation 

    ( ),  , 1, 2, 3
ij

B Z N i j  = =   (28) 

where Bij is 3 × 3 matrix, Z = [Z1, Z2, Z3]t is the amplitude ratio and N = [N1, N2, N3]t. The expression of 

0

i

i

A
Z

A
=

are given by 

( ) ( ) ( )

( ) ( ) ( )

1 11 33 23 32 21 2 33 3 22 31 2 23 3 22

1

11 22 33 32 23 12 21 33 31 23 13 21 32 31 22

,
N B B B B B N B N B B N B N B

Z
B B B B B B B B B B B B B B B

− − − + −
=

− − − + −
  

( ) ( ) ( )

( ) ( ) ( )

11 2 33 3 32 1 12 33 13 32 31 12 3 13 2

2

11 22 33 32 23 12 21 33 31 23 13 21 32 31 22

,
B N B N B N B B B B B B N B N

Z
B B B B B B B B B B B B B B B

− − − + −
=

− − − + −
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( ) ( ) ( )

( ) ( ) ( )

11 22 3 23 2 21 12 3 13 2 1 12 23 13 22

3

11 22 33 32 23 12 21 33 31 23 13 21 32 31 22

,
B B N B N B B N B N N B B B B

Z
B B B B B B B B B B B B B B B

− − − + −
=

− − − + −
 (29) 

where the expressions of Bij and Ni are given below 

( ) ( ) 2 2 2 2 2

1 0 0 0 0 0 0 2 0 0
2 sin cos ,  cos sin ,

j i j j i j j j j
B H k H f k r B k f k         = + − − + + = −  

( ) ( ) 2 2 2 2 2

3 1 0 0 0 0 0 0 0 0 0 0
cos ,  2 sin cos ,

j j j j
B r k N H k f H k r        = = − + − + + −  

( )2 0 0 0 0 3 0 0 0
cos sin ,  cos .N k f N r k  = + =  

It may be noted that these ratios depend on elastic constants, angle of propagation, magnetic and thermal 

parameters. 

 

5. Energy Partition 
 

The incident energy is distributed among the reflected waves at the boundary surface. The power per unit 

area represents the energy flux across the surface element and is given by Achenbach [46] as 

𝒫𝑖𝑗 =
1

2
ℛ (< (𝜎22 + 𝜏22)

𝑖 , (𝑢̇2
𝑗
)
∗
>) +

1

2
ℛ (< (𝜎21 + 𝜏21)

𝑖 , (𝑢̇1
𝑗
)
∗
>) , 𝑖, 𝑗 = (0,1,2,3), (30) 

where ()∗ denotes complex conjugate of (). 

There are bulk energy and interacting energy between the incident and reflected waves. This energy can be 

obtained together from the energy matrix, ℰij in the form of ratios as  

ℰ𝒾𝒿 = −
𝒫𝒾𝒿

𝒫00
, ≈ ~(𝑖, 𝑗 = 1,2,3) (31) 

where 

( ) ( )( )
2

20 0 2 2 * 2 2

00 0 0 0 0 0 0 0 0 0
cos { 1} sin { 2 } ,

2

A k
f H f H f


     = + + − + − +  

( ) ( )( )
*

2 2 * * 2 2

0 0 0 0
cos { 1} sin { 2 } .

2

i j i

ij i j i i j i

A A k
H f f f H f


     = + + − + − −  

The sum of the net interacting energy, 
int

and bulk energy ratios, 
bulk

due to the interactions of incident 

wave with the three dissimilar reflected waves can be obtained respectively from 

( )
3 3 3 3

0 0

1 1 1 1

, .
= = = =

 
= + + − =  

 
   

int bulk

i i ij ii ii

i i j i

 (32) 

Thus, the energy ratios corresponding to reflected longitudinal, transverse and thermal waves are respectively 

represented by 
1 2
,E E and 

3
E which are given by 

.= +
int bulk

i i i
E  (33) 

The sum of energy ratios at the boundary surface for the three reflected waves must be equal to unity.  
3

1

1.
=

+ = =
bulk int

i

i

E  (34) 

This shows the conservation law of energy for this specific problem. 

 

6. Special cases 
 

Case 1: If we neglect magnetic effect, the problem reduces to wave propagation in generalized thermoelastic 

material. In this case, 
0

0= = =h H  and 
2 2

12
 =a . The amplitude and energy ratios are given by Eqs. 

(29) and (31) respectively with the following modified values  

( ) ( )2 2 2 2 2 2

1 0 0 0 0 0 0 11 0 0 1 1 1 1
{sin 2 cos } , { 2 sin cos } ,         = − − + − = − − +N ı k f k r B ı k f k r  

( ) ( )2 2 2 2 2 2

12 0 0 2 2 2 2 13 0 0 3 3 3 3
{ 2 sin cos } , { 2 sin cos } ,         = − − + = − − +B ı k f k r B ı k f k r  
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( ) ( )( )
2

20 0 2 * 2

00 0 0 0 0 0
cos 1 sin { 2 } ,

2


   = + − − +

A k
f f f  

( ) ( )( )
*

2 * * 2
cos 1 sin { 2 } .

2


   = + − − −

i j i

ij i j i i j i

A A k
f f f f  

Case 2: If we neglect thermal effect, the problem reduces to wave propagation in isotropic material. In this case, 

1 1
0    = = = = = = =

e T
C  and 

i
f is taken so that: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0 1 1 2 2

0 1 0 2 1 1 1 2 2 1 2 2
sin , cos , sin , cos , cos , sin     −u u u u u u  

are components of the displacement. The amplitude and energy  ratios are respectively given by  
2 2

0 2 2 0 2

1 22 2 2 2

0 2 2 0 2 2

sin 2 2 cos 2 2 sin 2 cos 2
, ,

sin 2 sin 2 cos 2 sin 2 sin 2 cos 2

      

       

−
= =

+ +

sin
Z Z  (35) 

2

2 2 2

1 1 2 2

0

cos
, .

cos



 
= =

Z
E Z E  (36) 

These results exactly match with those of Achenbach [46] for classical elasticity. 

 

7. Numerical discussion 
 

We have computed the amplitude and energy ratios of reflected waves for the incident longitudinal wave 

through Matlab programming. The following relevant values of parameters for the generalized thermoelastic solid 

are considered in Ezzat and Youssef [30]. 

 
Table 2. Values of the parameters 

 

Parameters Values Parameters Values 

𝑘 386 /N Ks  
T

 5 1
1.78 10

− −
 K  

Ce 
2 2

383.1 /m Ks  ŋ 2
8886.73 /m s  

  10 2
3.86 10 / N m  λ 10 2

7.76 10 / N m  

1
c  

5
1.39 10

−
    3

8954 /kg m  

0
  7 2 2

4 10 /
−

 Nms C  0
 9 2 2

10 / 36 /
−

C Nm  

H0 
3

10 /C ms    

 

  
 

Figure 1. Variation of V1 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

It is interesting to note the effects of initial magnetic field ( )0
H  and specific heat ( )e

C  on the phase 

velocity, amplitude and energy ratios of the reflected waves. These effects lead to understand the physical 

properties of the materials. The variation of phase velocities of longitudinal, transverse and thermal waves with 

angular frequency are computed for different values of 
0

H  and 
e

C  in Figures 1, 2 and 3 respectively. In Figure 
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1, the phase velocity of longitudinal wave increases with the increase of  thereby making a parabolic profile. It 

is observed that the values of 
1

V  decrease with the increase of 
0

H  and 
e

C . The phase velocity of the transverse 

wave in Figure 2 with the angular frequency shows a parabolic-type decreasing profile until it reaches a minimum 

value located in the range of 30 50−Hz Hz to then grow again. 

 

  
 

Figure 2. Variation of V2 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

  
 

Figure 3. Variation of V3 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

  
 

Figure 4. Variation of Z1 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 
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Figure 5. Variation of Z2 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

  
 

Figure 6. Variation of Z3 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

  
 

Figure 7. Variation of E1 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

The minimum effect of 
0

H is observed in the lower values of  . Figure 3 shows that 
3

V decreases with the 

increase of  . It is observed that the values of 
3

V decrease with the increase of 
e

C and 
0

H . 

The variation of amplitude and energy ratios with angle of incidence are plotted for different values of 
0

H

and 
e

C in Figures 4–10. In Figure 4, the amplitude ratio, 
1

Z corresponding to longitudinal reflected wave starts 

from certain value and decreases up to certain value of 
0

 which increases thereafter with the increase of 
0

 . The 

variation of 
2

Z is similar with 
1

Z . In Figure 6, 
3

Z starts from certain value which decreases followed by 

increasing and then decreasing with the increase of 
0

 . We have seen small effect of 
0

H  on 
i

Z and the effect of 

e
C  on 

i
Z  are minimum near the normal angle of incidence. In Figures 7 and 8, the energy ratios 

1
E and 

2
E start 

from certain values which decrease to zero at certain values of 
0

 =
g

followed by increasing thereafter with the 

increase of 
0

 . The value of 
g

for 
1

E  and 
2

E  are different for different values of 
0

H  and 
e

C . The values of  
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
g

 for different values of 
0

H  and 
e

C  on 
1

E  are near to 64° and 70° respectively. This value is near 70° for the 

energy ratio, 
2

E . In Figure 9, 
3

E starts from certain value which decreases to zero making a parabolic curves in 

the regions 
0 0 0 0 0 0

0 0 0
: 31 74 , : 31 76 , : 32 78       I II III in Figure 9 (a) and 

0 0 0 0 0 0

0 0 0
: 32 75 , : 34 82 , : 35 80       I II III  in Figure 9 (b). Then, the graph of 

3
E  

increases with the increase of 
0

 . Interestingly, these parabolic regions are different for different values of 
0

H  

and 
e

C . The effect of 
0

H  and 
e

C  on 
i

E are found to be minimum near grazing angle of incidence. In Figure 

10, we have seen that sum of energy ratios of the reflected waves is closed to unity. This shows the conservation 

law of energy for this problem. 

 

  
 

Figure 8. Variation of E2 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

  
 

Figure 9. Variation of E3 for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 
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Figure 10. Sum of energy ratios for different values of (a) H0 (C/ms) and (b) Ce (m
2/Ks2) 

 

8. Conclusions 
 

We have investigated the problem of reflection of waves from a half-space of generalized magneto 

thermoelastic materials. The expressions of the amplitude and energy ratios of reflected waves are found by using 

the appropriate boundary conditions. These ratios and phase velocities of the longitudinal, transverse and thermal 

waves are calculated numerically and the results are plotted graphically. We have observed that the present study 

confirms the significant effects of the magnetic field and thermal parameter on the wave propagation. The 

following points are the concluding remarks: 

(i) The amplitude and energy ratios are functions of angle of incidence, magnetic, thermal and elastic 

parameters. 

(ii) The phase velocity of longitudinal wave increases with the increase of 
0

H  and 
e

C . 

(iii) The phase velocity corresponding to thermal wave increases with the increase of  . 

(iv) The variations of 
i

Z  and 
2

Z  are similar in nature. 

(v) The effect of 
0

H  on 
i

Z  is very small. 

(vi) The effects of 
0

H  and 
e

C  on 
i

E  are minimum near the grazing angle of incidence. 

(vii) The sum of energy ratios of reflected waves are close to one. 

The new direction of the present work: The problem of reflection and refraction of elastic waves in the half-

spaces of generalized magneto thermoelastic materials can be investigated. In this problem, the amplitude and 

energy ratios of the reflected and refracted waves could be one of the interesting area to discuss the various effects 

of thermal and magnetic fields of the wave propagation. 
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