
 
Materials Plus 

https://ojs.wiserpub.com/index.php/MP/ 

 

Copyright ©2023 Maosheng Zheng, et al.  
DOI: https://doi.org/10.37256/xxxx 
This is an open-access article distributed under a CC BY license  

(Creative Commons Attribution 4.0 International License) 

https://creativecommons.org/licenses/by/4.0/ 

 

 

Volume 2 Issue 2|2023| 1                                                                                                                                                               Materials Plus  

Research Article 

 

 

Parameter Optimization Design of Plasma Arc Machining SS 304 

Alloy by Means of Probabilistic Multi – objective Approach 
 

 

Maosheng Zheng1*, Jie Yu2 

 
1School of Chemical Eng., Northwest University, Xi’an, 710069, China 
2School of Life Science, Northwest University, Xi’an, 710069, China 

 E-mail: mszhengok@aliyun.com 

 

Received: 30 May 2023; Revised: 8 June 2023; Accepted: 6 July 2023 

 

Abstract: Plasma arc machining is an unconventional machining process, which is widely used to machine 

intricate part profiles of alloys with difficulty in general machine. In general, the surface roughness, kerf ratio, 

and material removal rate (MRR) are used as evaluation targets of the production process and quality of the 

machining samples; the plasma arc cutting parameters, such as arc voltage, standoff distance, cutting speed, and 

plasma offset, are employed as the input parameters for the cutting of SS 304 alloy machined at two different 

types of nozzles (130 A and 200 A). The parameter optimization design of plasma arc machining is a typical of 

optimal problem with multiple objectives. The employment of a rational multi – objective approach is quite 

important to the designers for the parameter optimization design of plasma arc machining. In this article, the 

probabilistic multi – objective optimization is utilized to conduct the parameter optimization design of plasma arc 

machining SS 304 alloy of thickness 6 mm, which is designed according to a mixed Taguchi design of L18 

orthogonal array. The optimal parameters of plasma arc machining SS 304 alloy from the designed experiment 

for Nozzle 1 (130 A) are arc voltage at 136V, cutting speed of 2000mm/min, standoff distance of 2mm, and 

plasma offset of 2.25mm; the optimized parameters of plasma arc in machining SS 304 alloy from the designed 

experiment for Nozzle 2 (200 A) are arc voltage at 133V, cutting speed of 2000 mm/min, standoff distance of 2 

mm, and plasma offset of 1.25mm. The results indicate the reasonability of the approach. 
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1. Introduction 
 

Stainless steel (SS) 304 alloy is widely used in the manufacturing industries, such as manufacturing of 

automotive, aerospace structures, architectural paneling, and marine environment due to its higher strength and 

wear resistance. But the difficulty of this material is the machining by using common processes. Plasma arc cutting 

(PAC) is one of the unconventional machining processes most commonly used in the process [1].  

The advantages of PAC process are the abilities of cutting all electrically conductive materials and high alloy 

steel materials with medium and large thicknesses at high cutting speed. 

The design of experiment (DOE) is conducted to study the selection of suitable process variables and their 

influence in evaluating the part quality commonly [1–13].  

Rouniyar et al. analyzed and optimized their experiment results by using the grey relational analysis [13]; 

Singh et al. carried out the multi-response optimization of electro-discharge machining (EDM) process on basis 

of experimental analysis of machining superalloy Inconel-718 [14]. 
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Tsiolikas et al conducted the optimization of neural network parameters of plasma arc cutting process by 

using Taguchi Robust Design [15]. Kechagias et al performed the parameter design of CNC plasma - arc cutting 

of carbon steel plates using robust design [16]. 

The parameter optimization design of plasma arc in cutting SS 304 alloy is a typical optimal problem with multiple 

objectives, thus multi – objective optimization could be employed to deal with it reasonably. 

Many multi-objective optimizations have been proposed, e.g., VIšekriterijumsko KOmpromisno Rangiranje 

(VIKOR), Technique of ranking Preferences by Similarity to the Ideal Solution (TOPSIS), Multi-Objective 

Optimization on the basis of Ratio Analysis (MOORA), and Analytical Hierarchy Process (AHP), etc. [17–21].  

In fact, the essence of multi-objective optimization is the issue of “simultaneous optimization of multiple 

objectives” inevitably. However, the above approaches of multi- objective optimization (MOO) took the 

"additive" algorithm as the actual operation with weighting factors to measure the differences of significance of 

different objectives [17–21]. Therefore, the "additive" algorithm of multiple evaluation indexes has actually a big 

distance from the essence of "simultaneous optimization of multiple indexes" actually, but seems to be "union" in 

viewpoint of set theory and probability theory instead [22]. The grey relational analysis also introduced artificial 

factors, which has unclear meaning [12,13]. 

Contrarily, in the spirit of probability theory, the "simultaneous optimization of multiple indexes" should 

appropriately take the form of "joint probability" of the multiple independent objectives.  

Besides, since the introduction of artificial factors in some previous methods, the relevant algorithms could 

be considered as a semi-quantitative approach in some sense. Additionally, the choice of scaled factor 

(denominator) in the normalization process is a puzzled problem, different normalization factors usually result in 

considerable differences [22].  

Therefore, the appropriate expression of “simultaneous optimization of multiple objectives” in quantitative 

form is still on the way.  

In view of above situation, each objective in the multi-objective optimization is analogical as an independent 

event from the perspective of probability theory, and the entire multi-objective optimization as a “joint event” of 

all individual events, thus the total / overall probability of “joint event” is the product of each individual event in 

whole thing [22]. While each independent event could be evaluated according to its preference degree in the 

assessment by introducing a quantified new index "partial preferable probability", and therefore simultaneous 

optimization of multiple objectives can be reasonably evaluated by the total / overall preferable probability of 

“joint event”. This treatment has the advantage of considering simultaneous optimizations of multiple objectives 

in the spirit of probability theory, which is an overall planning approach entirely.  

In this paper, the probabilistic multi – objective optimization is employed to study the parameter optimization 

design of plasma arc machining SS 304 alloy of thickness 6 mm, which is designed according to a mixed Taguchi 

design of L18 orthogonal array. The aim is to provide a rational optimal approach to conduct parameter 

optimization of material machining with multiple objectives, which conforms to the essence of “simultaneous 

optimization of multiple objectives”. 

 

2. Probabilistic Multi – objective Optimization 

The main detail of the new approach of probabilistic multi – objective optimization is briefly illuminated in 

the following sections.  

 

2.1 Brief illumination of the probabilistic multi-objective optimization 
 

The idea of preferable probability was introduced to reflect the preference degree of the objectives (attributes) 

in the assessment in the probabilistic method for multi - objective optimization [22]. In the methodology, the 

objectives (attributes) are preliminarily classified into both beneficial and unbeneficial types; Moreover, the 

assessment of the partial preferable probability for each type of performance index is established corresponding 

to its type quantitatively, respectively. Subsequently, each objective is analogical as an independent event in 

probability theory, thus the simultaneous optimization of multiple objectives could be taken as the product of 

“partial preferable probability” of each objective event, which form a total / overall preferable probability. Finally, 

the total / overall preferable probability is used to participate the competition for a candidate in the optimization, 

which is decisive and unique / overall index of “joint event” (candidate). Through this way, the multi – objective 

optimization problem is transferred into a single objective one reasonably. Clearly, this treatment is attributed to 

the overall planning method.  

 

2.2 Quantitative expression of the probabilistic multi - objective optimization 
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As the value of performance utility of an attribute could reflect the feature of the corresponding attribute in 

one aspect, therefore the corresponding preferable probability could be naturally correlated to the value of this 

performance utility inevitably [22].  

For the simplicity, the partial preferable probability of a beneficial type of attribute was directly assumed to 

be proportional to the value of performance utility of the attribute index [22], i.e., 

ijij
XP  , 

ijjij
XP = , ni ,...,2,1= ; mj ,...,2,1= . (1) 

In Eq. (1), Xij reflects the utility value of the index of the j-th attribute in the i-th scheme; Pij indicates the 

partial preferable probability of the beneficial attribute Xij; n represents the total number of candidate in scheme; 

m is the number of attributes for each scheme; j is the normalized coefficient of preferable probability of the j-th 

attribute. 
 

While as to the unbeneficial attribute, its partial preferable probability could be assumed to be negatively 

linear correlated to the corresponding performance utility value of the attribute index,  

ijij
XP − , )(
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XXXP −+=  , ni ,...,2,1= ; mj ,...,2,1= . (2) 

where j is the normalized coefficient of preferable probability of the j-th unbeneficial attribute, Xjmin and Xjmax are 

the minimum and maximum values of the j-th unbeneficial attribute performance utility index, respectively.  

Furthermore, according to the normalization of probability, i.e.,  
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it results in the normalized coefficient of preferable probability j and j as, 
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where 
j

X is the arithmetic mean value of the j-th performance utility index.  

Moreover, according to probability theory, the joint probability of the i-th scheme is the product of all the 

partial preferable probability Pij as a whole,  
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Finally, the joint probability of the i-th scheme is actually the overall / total preferable probability of the 

scheme, which is the unique and decisive indicator to determine status of the scheme in the corresponding 

optimization [22]. The scheme with the largest overall / total preferable probability among all schemes 

corresponds to the unique optimum status under the consideration of simultaneous optimization of multiple 

objectives. 

 

3. Applications in Parameter Optimization Design of Plasma Arc Machining 

SS 304 Alloy 
 

Hema et al conducted experimental investigations on SS 304 alloy using plasma arc cutting [1], the surface 

roughness, kerf ratio, and material removal rate (MRR) are evaluated as the optimal goals which affect the 

production process and quality of the machining surfaces. The input variables include the plasma arc cutting 

parameters, such as arc voltage, standoff distance, cutting speed, and plasma offset for the cutting of SS 304 alloy 

machined, the cutting sample are nozzles at two different types of (130 A and 200 A).  

Table 1 shows the designed input experimental factors and responses using nozzles 1 (130 A) and 2 (200 A) 

of the experiments with a mixed Taguchi design of L18 orthogonal array. For the two nozzles, a total of 36 

experiments were conducted according to the L18 orthogonal array design. 

The machining of the SS 304 alloy material is done by fixing the workpiece on the worktable of the plasma 

arc machine permanently. The dimension of the workpiece was 817 × 210 mm and thickness of it 6 mm. For more 

details of these PAC experiments, see reference [1]. 

 
Table 1. Factors and responses using nozzles 1 (130 A) and 2 (200 A) 

Sl. 

no. 

Arc 

voltage 

(V) 

Cutting 

speed 

(mm/ 

min) 

Standoff 

distance 

(mm) 

Plasma 

offset 

(mm) 

Nozzle 1 (130 A) Nozzle 2 (200 A) 

Surface 

roughness 

(mm) 

Kerf 

ratio 

MRR 

(g/s) 

Surface 

roughness 

(mm) 

Kerf 

ratio 

MRR 

(g/s) 
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1 133 1000 2 1.05 1.30 0.60 1.63 1.87 0.60 1.72 

2 133 1000 3.5 1.25 1.45 0.55 1.59 2.82 0.55 1.62 

3 133 1000 5 2.25 1.78 0.54 1.98 1.61 0.56 1.81 

4 133 1500 2 1.05 1.28 0.54 2.95 1.85 0.52 2.92 

5 133 1500 3.5 1.25 1.52 0.65 2.78 1.70 0.48 2.92 

6 133 1500 5 2.25 1.42 0.66 2.79 1.60 0.52 2.33 

7 133 2000 2 1.25 1.62 0.57 3.36 1.38 0.50 3.05 

8 133 2000 3.5 2.25 1.79 0.60 2.91 1.66 0.52 3.10 

9 133 2000 5 1.05 1.71 0.62 2.93 2.04 0.48 2.59 

10 136 1000 2 1.25 2.01 0.61 2.49 1.88 0.56 1.80 

11 136 1000 3.5 2.25 1.59 0.55 2.07 1.34 0.57 1.78 

12 136 1000 5 1.05 1.59 0.63 1.93 1.30 0.63 2.10 

13 136 1500 2 2.25 1.49 0.62 2.98 1.75 0.52 2.63 

14 136 1500 3.5 1.05 1.77 0.53 2.73 2.09 0.53 2.22 

15 136 1500 5 1.25 1.58 0.57 2.66 1.49 0.52 2.45 

16 136 2000 2 2.25 1.16 0.51 3.42 1.78 0.48 3.07 

17 136 2000 3.5 1.05 1.31 0.60 3.19 1.68 0.51 3.27 

18 136 2000 5 1.25 1.62 0.57 2.87 2.12 0.53 2.77 

 

Table 2 shows the evaluated consequences for the designed experiments with a mixed Taguchi design of L18 

orthogonal array.  

In the evaluation, the MRR has the characteristic of “larger the better”, which belongs to the beneficial index, 

while kerf ratio and surface roughness have the characteristic of “smaller the better”, which are attributed to the 

unbeneficial index. 

By using probabilistic multi – objective optimization, the final optimum target is the total preferable 

probability uniquely, the scheme that has the maximum total preferable probability will be the optimal selection 

of the design comparatively in viewpoint of system theory. 

Table 2 indicates that the 16th scheme exhibit the maximum total preferable probability for the designed 

experiments for Nozzle 1 (130 A), while the 7th scheme exhibit the maximum total preferable probability for the 

designed experiments for Nozzle 2 (200 A) in the designed experiments. Therefore, the optimized parameters of 

plasma arc machining SS 304 alloy from the designed experiment for Nozzle 1 (130 A) are arc voltage at 136V, 

cutting speed of 2000mm/min, standoff distance of 2mm, and plasma offset of 2.25mm; the optimized parameters 

of plasma arc in machining SS 304 alloy from the designed experiment for Nozzle 2 (200 A) are arc voltage at 

133V, cutting speed of 2000 mm/min, standoff distance of 2 mm, and plasma offset of 1.25mm. 

Although the final results of the optimized parameters of plasma arc machining SS 304 alloy from the 

designed experiment for Nozzles 1 (130 A) and 2 (200A) are the same as those by using grey relational analysis 

by chance, the analysis procedures are intrinsically different, there is a uncertain factor grey relational analysis, 

which is the selected subjectively without any rationality [1]. 

 
Table 2. Evaluated consequences for the designed experiments with a mixed Taguchi design of L18 orthogonal array 

 130A 200A 

Sl. 

no. 

Partial preferable probability 

Total 

preferable 

probability 

 Partial preferable probability 

Total 

preferable 

probability 

 

PSR Pkf PMRR Pt×104 Rank PSR Pkf PMRR Pt×104 Rank 

1 0.0636 0.0541 0.0345 1.1868 15 0.0533 0.0490 0.0390 1.0186 17 

2 0.0589 0.0588 0.0336 1.1652 16 0.0308 0.0538 0.0367 0.6087 18 

3 0.0484 0.0598 0.0419 1.2129 14 0.0595 0.0529 0.0410 1.2896 15 

4 0.0643 0.0598 0.0624 2.3976 2 0.0538 0.0567 0.0661 2.0183 6 

5 0.0567 0.0493 0.0588 1.6444 10 0.0573 0.0606 0.0661 2.2975 5 

6 0.0598 0.0484 0.0590 1.7090 9 0.0597 0.0567 0.0528 1.7879 9 

7 0.0535 0.0569 0.0711 2.1652 4 0.0649 0.0587 0.0691 2.6309 1 

8 0.0481 0.0541 0.0616 1.6022 12 0.0583 0.0567 0.0702 2.3221 4 
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9 0.0506 0.0522 0.0620 1.6386 11 0.0493 0.0606 0.0587 1.7516 10 

10 0.0412 0.0531 0.0527 1.1520 17 0.0531 0.0529 0.0408 1.1445 16 

11 0.0544 0.0588 0.0438 1.4028 13 0.0659 0.0519 0.0403 1.3791 13 

12 0.0544 0.0512 0.0408 1.1392 18 0.0668 0.0462 0.0476 1.4670 12 

13 0.0576 0.0522 0.0631 1.8957 5 0.0562 0.0567 0.0596 1.8979 8 

14 0.0488 0.0607 0.0578 1.7099 8 0.0481 0.0558 0.0503 1.3490 14 

15 0.0548 0.0569 0.0563 1.7547 7 0.0623 0.0567 0.0555 1.9620 7 

16 0.0681 0.0626 0.0724 3.0841 1 0.0555 0.0606 0.0695 2.3357 3 

17 0.0633 0.0541 0.0675 2.3111 3 0.0578 0.0577 0.0741 2.4707 2 

18 0.0535 0.0569 0.0607 1.8494 6 0.0474 0.0558 0.0627 1.6583 11 

 

4. Conclusion 
 

Through this study, it following conclusions can be obtained: 

1. The probabilistic multi-objective optimization conforms to the essence of “simultaneous optimization of 

multiple objectives”; 

2. The probabilistic multi-objective optimization is rational to be used to conduct the parameter 

optimization design of plasma arc cutting of SS 304 alloy; 

3. The consequences signify the practical significance of the approach to the industrial production process; 

4. The potential avenues of future research is to grasp the essence of “simultaneous optimization of multiple 

objectives” to explore more rational approach.  
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