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Abstract: For the advanced frequency study of thick functionally graded material (FGM) circular cylindrical 

shells, it is interesting to consider the extra effects of nonlinear coefficient term in third-order shear deformation 

theory (TSDT) of displacements on the calculation of varied shear correction coefficient. The formulation for the 

advanced nonlinear shear correction coefficient are based on the energy equivalence principle. The values of 

nonlinear shear correction coefficient are usually functions of nonlinear coefficient term of TSDT, power-law 

exponent parameter and environment temperature. The free vibration frequencies of thick FGM circular 

cylindrical shells are investigated with the simply homogeneous equation by considering that simultaneous effects 

of the TSDT, the nonlinear shear correction coefficient of transverse shear force and the two direction of mode 

shapes. The novelty is more important and reasonable for the thick FGM circular cylindrical shells, especially for 

the ratio of length to thickness is five by considering the effects of advanced nonlinear shear correction coefficient 

and nonlinear coefficient term of TSDT on the advanced calculation of fundamental first natural frequencies. 
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1. Introduction 
 

There are some traditional numerical investigations in the frequency study of free vibration for the 

functionally graded material (FGM) cylindrical shells and panels. Zhang et al. [1] presented the isogeometric 

numerical method and first-order shear deformation theory (FSDT) of displacements to study the natural 

frequencies and mode shapes for the carbon nanotubes reinforced (CNTR) FGM cylindrical shells. Liu et al. [2] 

presented the wave based method (WBM) and FSDT of displacements to study the natural frequency for the FGM 

cylindrical shells by considering the constant value of shear correction factor equal to 5/6 for the transverse shear 

force. Baghlani et al. [3] presented the Euler-Lagrange equations and higher-order shear deformation theory 

(HSDT) of displacements to study the natural frequency for the fluid-filled FGM cylindrical shells surrounded by 

Pasternak elastic foundation. Shahbaztabar et al. [4] presented the eigenvalue equation and FSDT of displacements 

to study the natural frequency for the fluid-filled FGM cylindrical shells surrounded by Pasternak elastic 

foundation by also considering the constant value of shear correction factor equal to 5/6 for the transverse shear 

force. Babaei et al. [5] presented the two steps perturbation technique and HSDT of displacements to study the 

natural frequency for the FGM cylindrical panels resting on nonlinear elastic foundation. Zhang et al. [6] presented 

the modified Fourier cosine series method and FSDT of displacements to study the natural frequency for the 

moderately thick FGM cylindrical shells by also considering the constant value of shear correction factor equal to 

5/6 for the transverse shear force. Fan et al. [7] presented the Walsh series method (WSM) and FSDT of 

displacements to study the natural frequency for the FGM cylindrical shells by also considering the constant value 
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of shear correction factor equal to 5/6 for the transverse shear force. Awrejcewicz et al. [8] presented the 

variational Ritz method, the R-functions method (RFM) and FSDT of displacements to study the natural frequency 

for the shallow FGM cylindrical shells by also considering the constant value of shear correction factor equal to 

5/6 for the transverse shear force. Liew et al. [9] presented the eigenvalue equation and FSDT of displacements 

to study the natural frequency for the coating-FGM-substrate cylindrical shells by also considering the constant 

value of shear correction factor equal to 5/6 for the transverse shear force. 

For the frequency study of free vibration in the thick FGM cylindrical shells, it is usually considered the 

shear correction factor effect in the transverse shear force. The author has some investigations in the computed 

and varied values for the shear correction factor. Hong [10] presented the preliminary studies in free vibration 

frequency of thick FGM circular cylindrical shells without considering the effects of nonlinear coefficient TSDT 

term on the varied shear correction coefficient calculation. Hong [11] presented the preliminary studies of the 

varied shear correction and FSDT effects on the vibration frequency of thick FGM circular cylindrical shells in 

unsteady supersonic flow. In the advanced study for the vibration frequency of thick FGM circular cylindrical 

shells with the simply homogeneous equation, it is interesting to consider the simultaneous effects of the TSDT 

of displacements, the nonlinear shear correction coefficient of transverse shear force and the two directions of 

mode shapes. The vibration frequency results vs. shear correction coefficient 


k  values, nonlinear coefficient 

term 
1

c of TSDT, FGM power-law exponent parameter and environment temperature are studied, respectively 

under four main cases of (a) advanced nonlinear


k , 
1

c = 0.333333/mm2; (b) linear 


k , 
1

c = 0/mm2; (c) constant 


k = 5/6, 

1
c = 0.333333/mm2 and (d) constant 


k = 5/6, 

1
c = 0/mm2. 

 

2. Formulation for the advanced nonlinear kα 
 

For a two-material thick FGM circular cylindrical shells problem model under environment temperature T  

with thickness 
1

h  of FGM constituent material 1 and thickness 
2

h  of FGM constituent material 2, respectively 

in the thickness direction of the cylindrical coordinate systems are shown in Fig. 1. The properties 
i

P  of 

individual constituent material are in functions of T  for the power-law function type of FGMs [12]. The time 

dependent of nonlinear displacements ( u , v and w ) at any point ( x , , z ) of thick FGM cylindrical shells are 

assumed in the nonlinear vs. 𝑧3 with coefficient 𝑐1 term of TSDT equations [13] as follows, 

 

 
 

Figure 1. Two-material thick FGM circular cylindrical shells problem model 

 

𝑢 = 𝑢0(𝑥, 𝜃, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝜃, 𝑡)−𝑐1𝑧
3(𝜙𝑥 +

𝜕𝑤

𝜕𝑥
), 

𝑣 = 𝑣0(𝑥, 𝜃, 𝑡) + 𝑧𝜙𝜃(𝑥, 𝜃, 𝑡)−𝑐1𝑧
3 (𝜙𝜃 +

𝜕𝑤

𝑅𝜕𝜃
), 

𝑤 = 𝑤(𝑥, 𝜃, 𝑡), 

(1) 
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where 𝑢0  and 𝑣0  are the tangential displacements in the in-surface coordinates x  and   axes direction, 

respectively. w  is the transverse displacement in the out of surface coordinates z  axis direction of the middle-

plane of shells. 𝜙𝑥 and 𝜙𝜃 are the shear rotations. R is the middle-surface radius at any point ( x , , z ) of the 

FGM cylindrical shells. t  is the time. The coefficient for 𝑐1 = 4/(3ℎ
∗2) is given in the TSDT approach, in which 

*
h  is the total thickness of FGM circular cylindrical shells. 

For the normal stresses (
x

 and


 ) and the shear stresses (



x

, 
z

 and
xz

 ) in the thick FGM circular 

cylindrical shells under temperature difference T  for the ( k )th constituent material are assumed in expressions 

of product matrix terms with stiffness 𝑄̅𝑖𝑗, subscripts i,j=1,2,4,5,6, coefficients of thermal expansion (𝛼𝑥, 𝛼𝜃, 𝛼𝑥𝜃) 

and strains (𝜀𝑥, 𝜀𝜃 , 𝜀𝑥𝜃, 𝜀𝜃𝑧, 𝜀𝑥𝜃) [10][14-15] as follows, 

{
 
 

 
 
𝜎𝑥
𝜎𝜃
𝜎𝑥𝜃
𝜎𝜃𝑧
𝜎𝑥𝑧}

 
 

 
 

(𝑘)

=

[
 
 
 
 
 
𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

0 0
0 0
0 0

0 0 0 𝑄̅44 𝑄̅45
0 0 0 𝑄̅45 𝑄̅55]

 
 
 
 
 

(𝑘)
{
 
 

 
 
𝜀𝑥 − 𝛼𝑥∆𝑇
𝜀𝜃 − 𝛼𝜃∆𝑇
𝜀𝑥𝜃 − 𝛼𝑥𝜃∆𝑇

𝜀𝜃𝑧
𝜀𝑥𝑧 }

 
 

 
 

(𝑘)

 (2a) 

The stiffness integrations with z for the in-plane force resultant, moment and transverse shear force are 

expressed in the following equations, 
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h
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(2b) 

in which ss
ji

Q )6,2,1,( =
ss

ji  and **
ji

Q )5,4,(
**
=ji  are the stiffness of FGM shells. 


k  is the advanced 

shear correction coefficient.  

In the previous work of preliminary investigations for the computed and varied values of 


k
 
are usually 

functions of total thickness of shells, FGM power law index and environment temperature [16]. For the advanced 

thick FGM cylindrical shells study, it is interesting to consider the extra effects of nonlinear coefficient term of 

TSDT displacements on the calculation of varied shear correction coefficient. The advanced shear correction 

factor 


k  would be nonlinear with respect to 𝑐1 can be obtained by using the energy equivalence principle. Let 

the total strain energy defined by the shear forces and transverse shears stresses, respectively in the form along 

the length of cylindrical shells by Whitney [15]. It is reasonable to assume that 
𝜕𝑘𝑥

𝜕𝑥
=

𝜕𝑘𝜃

𝜕𝑥
=

𝜕𝑘𝑥𝜃

𝜕𝑥
=

𝜕𝑘𝑥

𝑅𝜕𝜃
=

𝜕𝑘𝜃

𝑅𝜕𝜃
=

𝜕𝑘𝑥𝜃

𝑅𝜕𝜃
=

𝜕𝑛𝑘𝑥

𝜕𝑥
=

𝜕𝑛𝑘𝜃

𝜕𝑥
=

𝜕𝑛𝑘𝑥𝜃

𝜕𝑥
=

𝜕𝑛𝑘𝑥

𝑅𝜕𝜃
=

𝜕𝑛𝑘𝜃

𝑅𝜕𝜃
=

𝜕𝑛𝑘𝑥𝜃

𝑅𝜕𝜃
, in which 𝑘𝑥 =

𝜕𝜙𝑥

𝜕𝑥
, 𝑘𝜃 =

1

𝑅

𝜕𝜙𝜃

𝜕𝜃
, 𝑘𝑥𝜃 =

𝜕𝜙𝜃

𝜕𝑥
+

1

𝑅

𝜕𝜙𝑥

𝜕𝜃
, 𝑛𝑘𝑥 =

𝜕

𝜕𝑥
(𝜙𝑥 +

𝜕𝑤

𝜕𝑥
), 𝑛𝑘𝜃 =

1

𝑅

𝜕

𝜕𝜃
(𝜙𝜃 +

𝜕𝑤

𝑅𝜕𝜃
) and 𝑛𝑘𝑥𝜃 =

𝜕

𝜕𝑥
(𝜙𝜃 +

𝜕𝑤

𝑅𝜕𝜃
)+ 

1

𝑅

𝜕

𝜕𝜃
(𝜙𝑥 +

𝜕𝑤

𝜕𝑥
). With the same procedure as in 

the thick FGM plates by substituting the shear forces and transverse shear stresses equations, respectively into the 

total strain energy equation, thus the advanced 


k can be obtained as follows for the thick FGM circular 

cylindrical shells, 

FGMZIV

FGMZSV

h
k

*

1
=

 , (3) 

where 

𝐹𝐺𝑀𝑍𝑆𝑉 = (𝐹𝐺𝑀𝑍𝑆 − 𝑐1𝐹𝐺𝑀𝑍𝑆𝑁)
2, 

𝐹𝐺𝑀𝑍𝐼𝑉 = 𝐹𝐺𝑀𝑍𝐼 − 2𝑐1𝐹𝐺𝑀𝑍𝐼𝑉1 + 𝑐1
2𝐹𝐺𝑀𝑍𝐼𝑉2 , the expression of parameters FGMZS, FGMZSN, 

FGMZI, FGMZIV1 and FGMZIV2 that are in functions of 
*

h , 
n

R , 
1

E  and 
2

E , for the more details can be 

referred by Hong [17]. The values of advanced nonlinear 


k
 
are usually nonlinear in functions of 𝑐1, 

n
R  and T . 

In which 
n

R  is the FGM power-law exponent parameter, 
1

E  and 
2

E  are the Young’s modulus for the FGM 

constituent material 1 and constituent material 2, respectively. In the preliminary linear 
k  study, it did not 
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consider the effect of 𝑐1 term in the calculation directly, thus the varied values of linear 


k  are usually functions 

of 
*

h , 
n

R  and T [16][18]. 

 

3. Some numerical results and discussions 
 

The simply polynomial equation in fifth-order of 𝜆𝑚𝑛  (
2

0 mnmn
I  = ) [10] can be applied directly to 

calculate the free vibration 
mn

  with considering the advanced nonlinear 


k , where subscript m  is the axial 

half-waves number, n  is the number of circumferential waves, and dzzI
i

N

k

k

k

k

i  
=

+

=

*

1

1
)(

 , in which 
*

N  is 

total number of constituent layers, 
)( k

  is the density of ( k )th constituent ply. The FGM temperature dependent 

constituent materials at inner material 1/outer material 2 i.e., SUS304/Si3N4 layers are used in the frequency 

computations of thick circular cylindrical shells. The advanced nonlinear values of 


k  are usually functions of 

𝑐1, 
n

R  and T . For geometric values of 𝐿/𝑅 = 1, 
21

hh =  and 2.1
*
=h mm are used, in which L  is the length 

of FGM cylindrical shells, the varied values of advanced nonlinear  are increasing with respect to 
n

R . Thus, 

advanced nonlinear values of  are used for frequency 
mn

  computations of the free vibration including the 

coefficient 𝑐1 term. 

For the non-dimensional frequency parameter 𝑓∗ = 4𝜋𝜔11𝑅√𝐼2/𝐴11  values under the effects of 
1

c = 

0.925925/mm2 and 
1

c = 0/mm2 for 𝐿/ℎ∗= 5, 8 and 10 are shown in Table 1a, where 
11

  is the fundamental first 

natural frequency ( 1== nm ). The presented 
*

f values under advanced 


k , environment temperature T and 

1
c

 
effects are not greater than 10.076400, which is in smaller value than 13.538765 in the preliminary 


k  study 

case [10]. Another non-dimensional frequency parameter Ω = (𝜔11𝐿
2/

*
h )√𝜌1/𝐸1 values under the cases of 

1
c

= 0.925925/mm2 and 
1

c = 0/mm2 for 𝐿/ℎ∗= 5, 8 and 10 are shown in Table 1b, in which 
1

  is the density of 

FGM constituent material 1. The presented  values under advanced 


k , environment temperature T and 
1

c
 

effects are not greater than 26.945133, which is in smaller value than 32.380783 in the preliminary 


k  study case 

[10]. The presented values of 
*

f  vs.
 

*
h  under 𝐿/ℎ∗=10, 300K, advanced nonlinear 


k  and 

1
c

 
effects are 

shown in Table 1c. The presented value 
*

f = 8.429713 at 
1

c = 0.333333/mm2, 
*

h = 2mm, 
n

R = 0.5 is found. 

The presented values of  vs.
 

*
h  under 𝐿/ℎ∗=10, 700K, advanced nonlinear 


k  and 

1
c

 
effects are shown in 

Table 1d. The presented value = 1.999438 at 
1

c = 6.584362/mm2, 
*

h = 0.45mm, 
n

R = 0.5 is found. 

The natural frequency 
mn

 (1/s) values with subscript mode shapes m
 
and n  are presented. The presented 

11
  vs. 

n
R  under 2.1

*
=h mm, advanced nonlinear


k , environment temperature T and 

1
c = 0.925925/mm 2 

for 𝐿/ℎ∗= 5 and 10 are shown in Table 2. There are in slightly different values for 
11

  under 𝐿/ℎ∗=5, 
n

R =0.5 

and T=300K, e.g. 
11

 =0.001911/s is in small different with 
11

 =0.001906/s when compared with published 

paper [10]. The other presented 
mn

 vs. m , n =2, 3, ...,9 are also found in the same value with published paper 

[10].  

The advanced nonlinear 


k  values for T =300K are listed in the Table 3. The values of advanced nonlinear 


k  are independent of ℎ∗  for the thick FGM circular cylindrical shells. The values of 


k  in the advanced 

nonlinear case with 
1

c ≠ 0 are different to the linear case with 
1

c = 0. The different values of 


k  vs. 
n

R  under

T =300K are shown in Fig. 2. There are in great variant 


k  values under the advanced nonlinear case with
1

c

≠ 0. The compared values of 
*

f  vs. n at m= 1, 2 and 3 with 𝐿/ℎ∗= 5, = 0.5, 
*

h = 2mm, T =300K are shown 


k


k

n
R
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in Fig. 3, respectively under four cases of (1) advanced nonlinear 


k , 
1

c = 0.333333/mm2; (2) linear 


k , 
1

c = 

0/mm2; (3) constant 


k = 5/6, 
1

c = 0.333333/mm2 and (4) constant 


k = 5/6, 
1

c = 0/mm2. All of the presented 

frequencies 
*

f  are decreasing vs. circumferential nodes n= 1-6 at axial nodes m= 1, 2 and 3 of thick FGM 

cylindrical shells. In Fig. 3a, 
*

f = 13.905487 is obtained at m= n= 1 under advanced nonlinear


k , 
1

c = 

0.333333/mm2. In Fig. 3c, 
*

f = 13.886978 is obtained at m= n= 1 under constant 


k = 5/6, 
1

c = 0.333333/mm2. 

In Fig. 3b, 
*

f = 20.434654 is obtained at m= n= 1 under linear


k , 
1

c = 0/mm2. In Fig. 3d, 
*

f = 20.131851 is 

obtained at m= n= 1 under constant 


k = 5/6, 
1

c = 0/mm2. There are small effects of nonlinear coefficient term 

1
c  and 


k  on the value of fundamental first natural frequencies by using the approaching of simply 

homogeneous equations. In the linear case 
1

c = 0/mm2, the values of 
*

f are overestimated. It is reasonable to 

consider the effect of nonlinear varied values 


k  and 
1

c  on the advanced calculation of natural frequencies. 

The article is presented for adding the effect of advanced nonlinear


k  as a continuation of a previous work 

[10] which was only using the effect of linear


k . The advanced nonlinear


k  is expressed in eq. (3), in which 

the fraction parameters 𝐹𝐺𝑀𝑍𝑆𝑉  and 𝐹𝐺𝑀𝑍𝐼𝑉  are in nonlinear functions of 𝑐1  value. For the linear


k  is 

preliminary expressed in eq. of the work [16], in which did not consider the effect of 𝑐1 term in the calculation 

directly. The impact of the advanced nonlinear 


k on results are in clarification with previous work [10]. 

Comparing the fundamental value of 
*

f results in both articles they are calculated to differ by approximately 

0.2%, when 𝑐1 is not equal to zero, this corresponds to the nonlinear case. Notably, there is a discrepancy in results 

when 𝑐1=0 (linear case), varying up to 40%. These compared values of 
*

f  vs. T conclusion draws are shown in 

Fig. 3e for nonlinear 


k in this paper and linear 


k referred to [10].  

For the more supplement of FGM and composited material analyses can be referred further in the fields of 

thermal analysis of cracked FGM plates by Do et al. [19], finite element method (FEM) applied in cracked nano-

plates with flexo-electric effects by Doan et al. [20], and FEM used for triple-layer composite plates under moving 

load by Nguyen et al. [21]. 

 

Table 1a. 
*

f  for SUS304/Si3N4 

𝐿/ℎ∗ 
n

R
 
  

 
1

c  

(1/mm2) 

*
f  

Present solution, 2.1
*
=h mm, advanced  

T= 1K T= 100K T= 300K T= 600K T= 1000K
 

5 0.5 0.925925 

0 

3.180231 

5.373269 

3.437422 

5.900316 

3.883499 

6.836672 

4.120175 

7.190872 

3.663467 

5.986253 

 1 0.925925 

0 

3.320887 

5.676170 

3.575643 

6.208767 

3.975845 

7.160784 

0.922096 

7.515075 

3.863254 

6.343256 

 2 0.925925 

0 

3.492469 

5.922058 

3.733553 

6.440915 

4.141279 

7.375738 

4.398373 

7.747935 

4.100106 

6.706929 

 10 0.925925 

0 

3.756472 

6.152549 

3.984605 

6.615449 

4.394351 

7.462710 

4.670895 

7.898860 

4.532107 

7.257466 

8 0.5 0.925925 

0 

2.239428 

4.160760 

2.420821 

4.516713 

2.734613 

5.131114 

2.901336 

5.437644 

2.577111 

4.752500 

 1 0.925925 

0 

2.337628 

4.345048 

2.516835 

4.697000 

10.076400 

5.307589 

3.009658 

5.623309 

2.716942 

5.000139 

 2 0.925925 

0 

2.452844 

4.543049 

3.294041 

4.886523 

2.921348 

5.488020 

3.102310 

5.817079 

2.882582 

5.291233 

 10 0.925925 

0 

2.643668 

4.871469 

2.804904 

5.191528 

3.095393 

5.766388 

3.289649 

6.127082 

3.186127 

5.840260 

10 0.5 0.925925 

0 

1.926534 

3.864588 

2.082611 

4.189507 

2.352230 

4.749449 

2.495704 

5.036603 

2.217462 

4.427573 

 1 0.925925 

0 

2.010933 

4.032133 

2.165022 

4.352602 

2.439111 

4.908469 

2.586515 

5.204863 

2.337732 

4.656122 


k
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Table 1b. Ω for SUS304/Si3N4 

 

 

Table 1c. Frequency 
*

f  with advanced nonlinear  

 

 

Table 1d. Frequency Ω with advanced nonlinear  


k


k

 2 0.925925 

0 

2.109406 

4.217228 

5.662171 

4.530303 

2.514311 

5.077848 

2.670045 

5.386767 

2.480144 

4.928913 

 10 0.925925 

0 

2.274468 

4.538136 

2.413341 

4.830076 

2.663402 

5.354484 

2.830519 

5.691110 

2.741575 

5.452303 

𝐿/ℎ∗ 
n

R
 
  

 
1

c  

(1/mm2) 

Ω 

Present solution, 2.1
*
=h mm, advanced  

T= 1K T= 100K T= 300K T= 600K T= 1000K
 

5 0.5 0.925925 

0 

5.784212 

9.772912 

6.106911 

10.482480 

6.709765 

11.812148 

7.146997 

12.473533 

7.124487 

11.641697 

 1 0.925925 

0 

5.787141 

9.891572 

6.112288 

10.613412 

6.644836 

11.967831 

1.546665 

12.605302 

7.126682 

11.701632 

 2 0.925925 

0 

5.808020 

9.848456 

6.121162 

10.559882 

6.679326 

11.896074 

7.116606 

12.536226 

7.130050 

11.663293 

 10 0.925925 

0 

5.784378 

9.473958 

6.104845 

10.135582 

6.696430 

11.372216 

7.135295 

12.066360 

7.126915 

11.412649 

8 0.5 0.925925 

0 

6.516922 

12.108159 

6.881316 

12.839003 

7.559621 

14.184557 

8.052412 

15.091719 

8.018895 

14.787794 

 1 0.925925 

0 

6.517866 

12.115031 

6.883740 

12.846661 

26.945133 

14.192934 

8.077132 

15.091481 

8.019266 

14.758296 

 2 0.925925 

0 

6.526577 

12.088236 

8.640930 

12.818329 

7.538786 

14.162303 

8.031305 

15.059334 

8.020460 

14.722258 

 10 0.925925 

0 

6.513334 

12.002076 

6.875865 

12.726371 

7.547174 

14.059581 

8.040471 

14.975647 

8.016496 

14.694459 

10 0.5 0.925925 

0 

7.007969 

14.057844 

7.399919 

14.886129 

8.128190 

16.411842 

8.658269 

17.473329 

8.624771 

17.220947 

 1 0.925925 

0 

7.008700 

14.053184 

7.401881 

14.880881 

8.152981 

16.407068 

8.676906 

17.460603 

8.624997 

17.178630 

 2 0.925925 

0 

7.015937 

14.026609 

18.566265 

14.854867 

8.110490 

16.379774 

8.640313 

17.431673 

8.625900 

17.142679 

 10 0.925925 

0 

7.004647 

13.976033 

7.394999 

14.800395 

8.117367 

16.319097 

8.647848 

17.387567 

8.622469 

17.147920 

(1/mm2) 
*

h (mm) 

*
f  

Present method, 𝐿/ℎ∗=10, T= 300K, advanced nonlinear , 

5.0=
n

R  1=
n

R  2=
n

R
 

6.584362 0.45 0.204179 0.215947 0.215343 

0.925925 1.2 2.352230 2.439111 2.514311 

0.333333 2 8.429713 8.724061 9.023207 

0.000033 200 842669.2 871143.1 902712.1 

0.000014 300 3801.353 3941.310 3940.774 

0.000003 600 18914.72 19368.17 20173.66 

0.000001 900 43945.85 45148.98 46948.40 

(1/mm2) 
*

h (mm) 

Ω 

Present method, 𝐿/ℎ∗=10, T= 700K, advanced nonlinear  


k

1
c 

k

1
c


k
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Table 2. Fundamental natural frequency 
11

  for advanced nonlinear , 
1

c , 2.1
*
=h mm 

 

 

Table 3. Advanced  vs. 𝑐1 and
n

R  under T= 300K 

 

 


k


k

5.0=
n

R  1=
n

R  2=
n

R
 

6.584362 0.45 1.999438 2.007078 1.966191 

0.925925 1.2 8.663210 8.667815 8.642622 

0.333333 2 18.63342 18.63708 18.61759 

0.000033 200 18629.91 18630.04 18630.16 

0.000014 300 55.19937 56.69650 59.67590 

0.000003 600 140.1471 140.1418 139.0635 

0.000001 900 217.3906 217.3800 216.3322 

𝐿/ℎ∗ 
n

R
 
  

 

11
 (1/s) 

 

T= 1K T= 100K T= 300K T= 600K T= 1000K
 

5 0.5 0.001620 0.001731 0.001911 0.001951 0.001614 

 1 0.001621 0.001733 0.001892 0.000422 0.001615 

 2 0.001627 0.001735 0.001902 0.001943 0.001616 

 10 0.001620 0.001731 0.001907 0.001948 0.001615 

10 0.5 0.000490 0.000524 0.000578 0.000590 0.000488 

 1 0.000491 0.000524 0.000580 0.000592 0.000488 

 2 0.000491 0.001316 0.000577 0.000589 0.000488 

 10 0.000490 0.000524 0.000578 0.000590 0.000488 

 

(1/mm2) 

*
h

(mm) 

 

1.0=
n

R  2.0=
n

R  5.0=
n

R  1=
n

R  2=
n

R  5=
n

R  10=
n

R  

92.592598 0.12 -0.821563 -0.861922    -1.181502 -4.392330 1.474843   0.583927 0.463616 

0.925925 1.2 -0.821565 -0.861923 -1.181503 -4.392341 1.474844   0.583927 0.463617 

0.231481 2.4 -0.821565 -0.861923 -1.181503 -4.392341 1.474844 0.583927 0.463617 

0.037037 6 -0.821564 -0.861924 -1.181502 -4.392332 1.474843 0.583927 0.463617 

0.009259 12 -0.821564 -0.861924 -1.181503 -4.392332 1.474843 0.583927 0.463617 

0 0.12 0.898426 0.956500 1.087890 1.195721 1.226106 1.121959 1.019033 

0 1.2 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034 

0 2.4 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034 

0 6 0.898425 0.956496 1.087891 1.195721 1.226106 1.121958 1.019033 

0 12 0.898426 0.956495 1.087891 1.195721 1.226106 1.121958 1.019033 

1
c 

k



Materials Plus  8 | C.C. Hong 

 
 

Figure 2. Values of 


k  vs. 
n

R  in nonlinear (
1

c ≠ 0) and linear (
1

c = 0) 

 

 

a 

 

b 
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c 

 

d 

 

e 

 

Figure 3. Compared 
*

f vs. n for m= 1-3, 𝐿/
*

h = 5 with varied and constant 


k . a 
*

f vs. n for m= 1-3, 𝐿/
*

h = 5 with advanced 

nonlinear , 
1

c = 0.333333/mm2, b 
*

f vs. n for m= 1-3, 𝐿/
*

h = 5 with linear


k , 
1

c = 0/mm2, c 
*

f vs. n for m= 1-3, 𝐿/
*

h = 5 

with constant 


k = 5/6, 
1

c = 0.333333/mm2, d 
*

f vs. n for m= 1-3, 𝐿/
*

h = 5 with constant 


k = 5/6, 
1

c = 0/mm2, e 
*

f vs. T for 

m=n=1, 𝐿/
*

h = 5, 
*

h =1.2mm and 
1

c = 0/mm2 

 

4. Conclusions 
 

The advanced frequency values of free vibration are computed by using the simply homogeneous equation 

and advanced nonlinear 


k  values for the thick FGM circular cylindrical shells. There are four parameters effects 

of nonlinear coefficient term 
1

c , shear correction coefficient 


k , power-law exponent parameter 
n

R  and 

environment temperature T on the natural frequencies are investigated. The main results and new contributions of 

the research is more important and reasonable for the thick FGM circular cylindrical shells, especially for 𝐿/ℎ∗= 


k
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5 to consider the effect of nonlinear varied values 


k  and 
1

c  on the advanced calculation of fundamental first 

natural frequencies. 

 

 

Acknowledgments 
 

The author expresses his thanks to the people helping with this work, and acknowledge the valuable 

suggestions from the peer reviewers.  

 

 

Conflict of interest 
 

There is no conflict of interest for this study. 

 

 

References 
 

[1] Zhang, Y.; Jin, G.; Chen, M.; Ye, T.; Liu, Z. Isogeometric free vibration of sector cylindrical shells 

with carbon nanotubes reinforced and functionally graded materials. Results Phys. 2019, 16, 102889, 

https://doi.org/10.1016/j.rinp.2019.102889. 

[2] Liu, T.; Wang, A.; Wang, Q.; Qin, B. Wave based method for free vibration characteristics of 

functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled 

Struct. 2020, 148, https://doi.org/10.1016/j.tws.2019.106580. 

[3] Baghlani, A.; Khayat, M.; Dehghan, S.M. Free vibration analysis of FGM cylindrical shells surrounded 

by Pasternak elastic foundation in thermal environment considering fluid-structure interaction. Appl. 

Math. Model. 2020, 78, 550–575. https://doi.org/10.1016/j.apm.2019.10.023. 

[4] Shahbaztabar, A.; Izadi, A.; Sadeghian, M.; Kazemi, M. Free vibration analysis of FGM circular 

cylindrical shells resting on the Pasternak foundation and partially in contact with stationary 

fluid. Appl. Acoust. 2019, 153, 87–101, https://doi.org/10.1016/j.apacoust.2019.04.012. 

[5] Babaei, H.; Kiani, Y.; Eslami, M.R. Large amplitude free vibrations of long FGM cylindrical panels on 

nonlinear elastic foundation based on physical neutral surface. Compos. Struct. 2019, 220, 888–898, 

https://doi.org/10.1016/j.compstruct.2019.03.064. 

[6] Zhang, W.; Fang, Z.; Yang, X.-D.; Liang, F. A series solution for free vibration of moderately thick 

cylindrical shell with general boundary conditions. Eng. Struct. 2018, 165, 422–440, 

https://doi.org/10.1016/j.engstruct.2018.03.049. 

[7] Fan, J.; Huang, J.; Zhang, J.; Zhang, J. The Walsh series method for free vibration analysis of 

functionally graded cylindrical shells. Composite Structures 2018, 206, 853–864. 

[8] Awrejcewicz, J.; Kurpa, L.; Shmatko, T. Linear and nonlinear free vibration analysis of laminated 

functionally graded shallow shells with complex plan form and different boundary conditions. Int. J. 

Non-linear Mech. 2018, 107, 161–169, https://doi.org/10.1016/j.ijnonlinmec.2018.08.013. 

[9] Liew, K.; Yang, J.; Wu, Y. Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected 

to a temperature gradient. Comput. Methods Appl. Mech. Eng. 2006, 195, 1007–1026, 

https://doi.org/10.1016/j.cma.2005.04.001. 

[10] Hong, C.-C. Free Vibration Frequency of Thick FGM Circular Cylindrical Shells with Simply 

Homogeneous Equation by Using TSDT. Adv. Technol. Innov. 2020, 5, 84–97, 

https://doi.org/10.46604/aiti.2020.4380. 

[11] Hong, C.C. Effects of Varied Shear Correction on the Thermal Vibration of Functionally-Graded 

Material Shells in an Unsteady Supersonic Flow. Aerospace 2017, 4, 12, 

https://doi.org/10.3390/aerospace4010012. 

[12] Hong, C.C. Rapid Heating Induced Vibration of Magnetostrictive Functionally Graded Material 

Plates. J. Vib. Acoust. 2012, 134, 021019, https://doi.org/10.1115/1.4004663. 

[13] Lee, S.; Reddy, J.; Rostam-Abadi, F. Transient analysis of laminated composite plates with embedded 

smart-material layers. Finite Elements Anal. Des. 2004, 40, 463–483, https://doi.org/10.1016/s0168-

874x(03)00073-8. 

[14] Lee, S.; Reddy, J. Non-linear response of laminated composite plates under thermomechanical 

loading. Int. J. Non-linear Mech. 2005, 40, 971–985, 

https://doi.org/10.1016/j.ijnonlinmec.2004.11.003. 

[15] Whitney, J.M. Structural Analysis Of Laminated Anisotropic Plates; Taylor & Francis Ltd: London, 

United Kingdom, 2018; ISBN: 9780203738122. 



Volume 2 Issue 2|2023| 11 Materials Plus 

[16] Hong, C. Thermal vibration of magnetostrictive functionally graded material shells by considering the 

varied effects of shear correction coefficient. Int. J. Mech. Sci. 2014, 85, 20–29, 

https://doi.org/10.1016/j.ijmecsci.2014.04.013. 

[17] Hong, C.-C. Advanced Dynamic Thermal Vibration of Laminated FGM Plates with Simply 

Homogeneous Equation by Using TSDT and Nonlinear Varied Shear Coefficient. Appl. Sci. 2022, 12, 

11776, https://doi.org/10.3390/app122211776. 

[18] Hong, C.-C. Thermal Vibration of Thick FGM Circular Cylindrical Shells by Using TSDT. Mater. 

Plus 2022, 2–11, https://doi.org/10.37256/mp.1120221967. 

[19] Van Do, T.; Doan, D.H.; Tho, N.C.; Duc, N.D. Thermal Buckling Analysis of Cracked Functionally 

Graded Plates. Int. J. Struct. Stab. Dyn. 2022, 22, https://doi.org/10.1142/s0219455422500894. 

[20] Doan, D.H.; Zenkour, A.M.; Van Thom, D. Finite element modeling of free vibration of cracked 

nanoplates with flexoelectric effects. Eur. Phys. J. Plus 2022, 137, 1–21, 

https://doi.org/10.1140/epjp/s13360-022-02631-9. 

[21] Nguyen, H.N.; Nguyen, T.Y.; Tran, K.V.; Tran, T.T.; Nguyen, T.T.; Phan, V.D.; Do, T.V. A finite 

element model for dynamic analysis of triple-layer composite plates with layers connected by shear 

connectors subjected to moving load. Materials 2019, 12, 598. 


