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Abstract: For the advanced frequency study of thick functionally graded material (FGM) circular cylindrical
shells, it is interesting to consider the extra effects of nonlinear coefficient term in third-order shear deformation
theory (TSDT) of displacements on the calculation of varied shear correction coefficient. The formulation for the
advanced nonlinear shear correction coefficient are based on the energy equivalence principle. The values of
nonlinear shear correction coefficient are usually functions of nonlinear coefficient term of TSDT, power-law
exponent parameter and environment temperature. The free vibration frequencies of thick FGM circular
cylindrical shells are investigated with the simply homogeneous equation by considering that simultaneous effects
of the TSDT, the nonlinear shear correction coefficient of transverse shear force and the two direction of mode
shapes. The novelty is more important and reasonable for the thick FGM circular cylindrical shells, especially for
the ratio of length to thickness is five by considering the effects of advanced nonlinear shear correction coefficient
and nonlinear coefficient term of TSDT on the advanced calculation of fundamental first natural frequencies.
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1. Introduction

There are some traditional numerical investigations in the frequency study of free vibration for the
functionally graded material (FGM) cylindrical shells and panels. Zhang et al. [1] presented the isogeometric
numerical method and first-order shear deformation theory (FSDT) of displacements to study the natural
frequencies and mode shapes for the carbon nanotubes reinforced (CNTR) FGM cylindrical shells. Liu et al. [2]
presented the wave based method (WBM) and FSDT of displacements to study the natural frequency for the FGM
cylindrical shells by considering the constant value of shear correction factor equal to 5/6 for the transverse shear
force. Baghlani et al. [3] presented the Euler-Lagrange equations and higher-order shear deformation theory
(HSDT) of displacements to study the natural frequency for the fluid-filled FGM cylindrical shells surrounded by
Pasternak elastic foundation. Shahbaztabar et al. [4] presented the eigenvalue equation and FSDT of displacements
to study the natural frequency for the fluid-filled FGM cylindrical shells surrounded by Pasternak elastic
foundation by also considering the constant value of shear correction factor equal to 5/6 for the transverse shear
force. Babaei et al. [5] presented the two steps perturbation technique and HSDT of displacements to study the
natural frequency for the FGM cylindrical panels resting on nonlinear elastic foundation. Zhang et al. [6] presented
the modified Fourier cosine series method and FSDT of displacements to study the natural frequency for the
moderately thick FGM cylindrical shells by also considering the constant value of shear correction factor equal to
5/6 for the transverse shear force. Fan et al. [7] presented the Walsh series method (WSM) and FSDT of
displacements to study the natural frequency for the FGM cylindrical shells by also considering the constant value
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of shear correction factor equal to 5/6 for the transverse shear force. Awrejcewicz et al. [8] presented the
variational Ritz method, the R-functions method (RFM) and FSDT of displacements to study the natural frequency
for the shallow FGM cylindrical shells by also considering the constant value of shear correction factor equal to
5/6 for the transverse shear force. Liew et al. [9] presented the eigenvalue equation and FSDT of displacements
to study the natural frequency for the coating-FGM-substrate cylindrical shells by also considering the constant
value of shear correction factor equal to 5/6 for the transverse shear force.

For the frequency study of free vibration in the thick FGM cylindrical shells, it is usually considered the
shear correction factor effect in the transverse shear force. The author has some investigations in the computed
and varied values for the shear correction factor. Hong [10] presented the preliminary studies in free vibration
frequency of thick FGM circular cylindrical shells without considering the effects of nonlinear coefficient TSDT
term on the varied shear correction coefficient calculation. Hong [11] presented the preliminary studies of the
varied shear correction and FSDT effects on the vibration frequency of thick FGM circular cylindrical shells in
unsteady supersonic flow. In the advanced study for the vibration frequency of thick FGM circular cylindrical
shells with the simply homogeneous equation, it is interesting to consider the simultaneous effects of the TSDT
of displacements, the nonlinear shear correction coefficient of transverse shear force and the two directions of

mode shapes. The vibration frequency results vs. shear correction coefficient k , values, nonlinear coefficient
term ¢, of TSDT, FGM power-law exponent parameter and environment temperature are studied, respectively
under four main cases of (a) advanced nonlineark , , ¢, = 0.333333/mm? (b) linear k , ¢, =0/mm?; (c) constant

k, =5/6, ¢, =0.333333/mm? and (d) constant k , = 5/6, ¢, = 0/mmZ,

2. Formulation for the advanced nonlinear k.

For a two-material thick FGM circular cylindrical shells problem model under environment temperature T
with thickness h, of FGM constituent material 1 and thickness h, of FGM constituent material 2, respectively
in the thickness direction of the cylindrical coordinate systems are shown in Fig. 1. The properties P, of

individual constituent material are in functions of T for the power-law function type of FGMs [12]. The time
dependent of nonlinear displacements (U ,v andw ) at any point (x , &, z ) of thick FGM cylindrical shells are
assumed in the nonlinear vs. z3 with coefficient ¢; term of TSDT equations [13] as follows,

FGM constituent material 1

FGM constituent material 2
Figure 1. Two-material thick FGM circular cylindrical shells problem model
i)
u=1uy(x,0,t) +z¢,(x,0,t)—c,z3(¢, + %),

v =1,(x,0,t) + zdg(x,0,t)—c, 23 (¢9 + };_We)’ ®

w=w(x,0,t),
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where u, and v, are the tangential displacements in the in-surface coordinates x and & axes direction,
respectively. w is the transverse displacement in the out of surface coordinates z axis direction of the middle-
plane of shells. ¢, and ¢4 are the shear rotations. R is the middle-surface radius at any point (x ,6,z ) of the
FGM cylindrical shells. t is the time. The coefficient for ¢; = 4/(3h*?) is given in the TSDT approach, in which

h™ is the total thickness of FGM circular cylindrical shells.

For the normal stresses (o, and o, ) and the shear stresses (o, ,, o, ando, ) in the thick FGM circular

X6 !
cylindrical shells under temperature difference AT for the (k )th constituent material are assumed in expressions
of product matrix terms with stiffness QU, subscripts i,j=1,2,4,5,6, coefficients of thermal expansion (a,, g, axg)
and strains (g, €g, £xg, €02, €x9) [10][14-15] as follows,
(o) @ @2 Qe 0 0 ] e AT
Og Q12 Q22 Qg 0 0 g9 — agAT
{gxﬂ } =106 Q26 Qs B 0 (i 45;:6 - angT¥
a: 0 0O 944 945 iez
(k) 0 0O Qs Qssly,y xz ()
The stiffness integrations with z for the in-plane force resultant, moment and transverse shear force are
expressed in the following equations,

(22)

(A..B...Dyo E

") ] ) ]

.
DB He) = [2Q. Wz, 2%, 2% 2%, 2%)dz (i, §° =1.2,6),

(2)
(A sBeo D Bl Fo HL ) = [2k, QG 2,2%,2°, 2%, 2%)dz (7, 7 = 45)

2

in which 6” (i°,j° =1,2,6) and (5” (i, j = 45) are the stiffness of FGM shells. k , is the advanced

shear correction coefficient.
In the previous work of preliminary investigations for the computed and varied values of k  are usually
functions of total thickness of shells, FGM power law index and environment temperature [16]. For the advanced

thick FGM cylindrical shells study, it is interesting to consider the extra effects of nonlinear coefficient term of
TSDT displacements on the calculation of varied shear correction coefficient. The advanced shear correction

factor k , would be nonlinear with respect to ¢, can be obtained by using the energy equivalence principle. Let

the total strain energy defined by the shear forces and transverse shears stresses, respectively in the form along

indri - i Okx _ Oko _ Okxp _ Okx _ Okg _
the length of cylindrical shells by Whitney [15]. It is reasonable to assume that o T ox o —Roo " Roo =

Okyg _ Onky _ Onkg _ Onk,g _ Onky _ Onkg _ Onk,g . . _ 09y _ 16¢9 _ 0d¢ lafﬁx _
rROG  ox  ox  ox _R00_R69_RBB’mWhIChkx_ax'kG_RBB'kxg_6x+R69’nkx_
a ow 10 ow a ow 10 ow . .
— — = —— —_ = — — )+ —— —_

P (py + ax)' nkg =30 (¢g + RBG) and nk,g o (¢g + Rae) =30 (py + ax)' With the same procedure as in

the thick FGM plates by substituting the shear forces and transverse shear stresses equations, respectively into the
total strain energy equation, thus the advanced k , can be obtained as follows for the thick FGM circular

cylindrical shells,
B 1 FGMZSV

a * (3)
h  FGMZIV

where
FGMZSV = (FGMZS — ¢;,FGMZSN)?,
FGMZIV = FGMZI — 2¢,FGMZIV1 + ¢,2FGMZIV?2, the expression of parameters FGMZS, FGMZSN,

FGMZI, FGMZIV1 and FGMZIV2 that are in functions of h™, R, E, and E,, for the more details can be
referred by Hong [17]. The values of advanced nonlinear k  are usually nonlinear in functionsof ¢;, R and T .
In which R is the FGM power-law exponent parameter, E, and E, are the Young’s modulus for the FGM

constituent material 1 and constituent material 2, respectively. In the preliminary linear k  study, it did not
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consider the effect of ¢, term in the calculation directly, thus the varied values of linear k , are usually functions

of h™, R, and T [16][18].

3. Some numerical results and discussions

The simply polynomial equation in fifth-order of 4,,,,, (4., = Ioa)mnz) [10] can be applied directly to

calculate the free vibration e, with considering the advanced nonlinear k  , where subscript m is the axial
. . . N k+1 (K) i . . *
half-waves number, n is the number of circumferential waves, and I, = ZI p 'z dz, in which N is
k
k=1

total number of constituent layers, p %) s the density of (k )th constituent ply. The FGM temperature dependent
constituent materials at inner material 1/outer material 2 i.e., SUS304/SisN, layers are used in the frequency
computations of thick circular cylindrical shells. The advanced nonlinear values of k , are usually functions of

c1, R, and T . For geometric valuesof L/R = 1, h; = h, and h™ = 1.2 mmare used, in which L isthe length
of FGM cylindrical shells, the varied values of advanced nonlinear k  are increasing with respectto R, . Thus,

advanced nonlinear values of k  are used for frequency e, ,, computations of the free vibration including the
coefficient ¢; term.
For the non-dimensional frequency parameter f* = 4mw,;R/I,/A;; values under the effects of c, =

0.925925/mm? and ¢, = 0/mm? for L/h*=5, 8 and 10 are shown in Table 1a, where @,, is the fundamental first
natural frequency (m = n =1). The presented f " values under advanced k, , environment temperature T and
c, effects are not greater than 10.076400, which is in smaller value than 13.538765 in the preliminary k  study
case [10]. Another non-dimensional frequency parameter Q = (w,,L%/h” )\/m values under the cases of ¢,
= 0.925925/mm? and ¢, = 0/mm? for L/h*= 5, 8 and 10 are shown in Table 1b, in which p, is the density of
FGM constituent material 1. The presented {1 values under advanced k  , environment temperature T and C,
effects are not greater than 26.945133, which is in smaller value than 32.380783 in the preliminary k  study case
[10]. The presented values of f~ vs. h™ under L/h*=10, 300K, advanced nonlinear k, and c, effects are
shown in Table 1c. The presented value f = 8.429713 at ¢, = 0.333333/mm? h™ = 2mm, R, = 0.5 is found.
The presented values of £2vs. h™ under L/h*=10, 700K, advanced nonlinear k, and c, effects are shown in
Table 1d. The presented value {1= 1.999438 at c, = 6.584362/mm? h™ = 0.45mm, R = 0.5 is found.

The natural frequency ,, (1/s) values with subscript mode shapes m and n are presented. The presented
@, vs. R, under h™ = 1.2 mm, advanced nonlineark , , environment temperature T and c, = 0.925925/mm 2
for L/h*=5 and 10 are shown in Table 2. There are in slightly different values for @,, under L/h*=5, R =0.5
and T=300K, e.g. @,, =0.001911/s is in small different with @,, =0.001906/s when compared with published

paper [10]. The other presented e . vs.m ,n =2, 3, ...,9 are also found in the same value with published paper
[10].
The advanced nonlinear k  values for T =300K are listed in the Table 3. The values of advanced nonlinear

k, are independent of h* for the thick FGM circular cylindrical shells. The values of k , in the advanced
nonlinear case with ¢, # 0 are different to the linear case with ¢, = 0. The different values of k , vs. R under
T =300K are shown in Fig. 2. There are in great variant k  values under the advanced nonlinear case withc,

# 0. The compared values of f~ vs.natm=1,2and 3with L/h*=5, R, =05, h"=2mm, T =300K are shown
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in Fig. 3, respectively under four cases of (1) advanced nonlinear k , , ¢, = 0.333333/mm? (2) linear k , , C, =
0/mm?; (3) constant k , = 5/6, ¢, = 0.333333/mm? and (4) constant k = 5/6, ¢, = 0/mm?. All of the presented
frequencies f" are decreasing vs. circumferential nodes n= 1-6 at axial nodes m= 1, 2 and 3 of thick FGM

cylindrical shells. In Fig. 3a, f = 13.905487 is obtained at m= n= 1 under advanced nonlinear k,,cC =

0.333333/mm?2. In Fig. 3¢, f = 13.886978 is obtained at m= n= 1 under constant k , = 5/6, ¢, = 0.333333/mm?.
In Fig. 3b, f = 20.434654 is obtained at m= n= 1 under lineark , , ¢, = 0/mm2. In Fig. 3d, f =20.131851 is
obtained at m= n= 1 under constant k = 5/6, ¢, = 0/mmZ There are small effects of nonlinear coefficient term
c, and k,_, on the value of fundamental first natural frequencies by using the approaching of simply
homogeneous equations. In the linear case ¢, = 0/mm?, the values of f " are overestimated. It is reasonable to
consider the effect of nonlinear varied values k and ¢, on the advanced calculation of natural frequencies.
The article is presented for adding the effect of advanced nonlineark , as a continuation of a previous work
[10] which was only using the effect of lineark , . The advanced nonlineark  is expressed in eq. (3), in which

the fraction parameters FGMZSV and FGMZIV are in nonlinear functions of c; value. For the linear k  is
preliminary expressed in eq. of the work [16], in which did not consider the effect of ¢, term in the calculation
directly. The impact of the advanced nonlinear k  on results are in clarification with previous work [10].

Comparing the fundamental value of f  results in both articles they are calculated to differ by approximately
0.2%, when c; is not equal to zero, this corresponds to the nonlinear case. Notably, there is a discrepancy in results
when ¢,=0 (linear case), varying up to 40%. These compared values of f " vs. T conclusion draws are shown in
Fig. 3e for nonlinear k , in this paper and linear k , referred to [10].

For the more supplement of FGM and composited material analyses can be referred further in the fields of
thermal analysis of cracked FGM plates by Do et al. [19], finite element method (FEM) applied in cracked nano-
plates with flexo-electric effects by Doan et al. [20], and FEM used for triple-layer composite plates under moving
load by Nguyen et al. [21].

Table1a. T for SUS304/SisN,

*

f
/e R C, .
/ Present solution, h = 1.2 mm, advanced K
(/mm?) a

T=1K T= 100K T= 300K T= 600K T=1000K
5 0.5 0.925925 3.180231 3.437422 3.883499 4.120175 3.663467
0 5.373269 5.900316 6.836672 7.190872 5.986253
1 0.925925 3.320887 3.575643 3.975845 0.922096 3.863254
0 5.676170 6.208767 7.160784 7.515075 6.343256
2 0.925925 3.492469 3.733553 4.141279 4.398373 4.100106
0 5.922058 6.440915 7.375738 7.747935 6.706929
10 0.925925 3.756472 3.984605 4.394351 4.670895 4532107
0 6.152549 6.615449 7.462710 7.898860 7.257466
8 0.5 0.925925 2.239428 2.420821 2.734613 2.901336 2577111
0 4.160760 4516713 5.131114 5.437644 4.752500
1 0.925925 2.337628 2.516835 10.076400 3.009658 2.716942
0 4.345048 4.697000 5.307589 5.623309 5.000139
2 0.925925 2.452844 3.294041 2.921348 3.102310 2.882582
0 4.543049 4.886523 5.488020 5.817079 5.291233
10 0.925925 2.643668 2.804904 3.095393 3.289649 3.186127
0 4.871469 5.191528 5.766388 6.127082 5.840260
10 0.5 0.925925 1.926534 2.082611 2.352230 2.495704 2.217462
0 3.864588 4.189507 4.749449 5.036603 4.427573
1 0.925925 2.010933 2.165022 2.439111 2.586515 2.337732
0 4.032133 4.352602 4.908469 5.204863 4.656122
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2 0.925925 2.109406 5.662171 2.514311 2.670045 2.480144

0 4.217228 4.530303 5.077848 5.386767 4.928913
10 0.925925 2.274468 2.413341 2.663402 2.830519 2.741575
0 4.538136 4.830076 5.354484 5.691110 5.452303

Table 1b. Q for SUS304/Si3N,

Q
L/ R C ; *
/ n Present solution, h = 1.2 mm, advanced Kk
(1/mm?) @
T=1K T= 100K T= 300K T= 600K T=1000K
5 0.5 0.925925 5.784212 6.106911 6.709765 7.146997 7.124487
0 9.772912 10.482480 11.812148 12.473533 11.641697
1 0.925925 5.787141 6.112288 6.644836 1.546665 7.126682
0 9.891572 10.613412 11.967831 12.605302 11.701632
2 0.925925 5.808020 6.121162 6.679326 7.116606 7.130050
0 9.848456 10.559882 11.896074 12.536226 11.663293
10 0.925925 5.784378 6.104845 6.696430 7.135295 7.126915
0 9.473958 10.135582 11.372216 12.066360 11.412649
8 0.5 0.925925 6.516922 6.881316 7.559621 8.052412 8.018895
0 12.108159 12.839003 14.184557 15.091719 14.787794
1 0.925925 6.517866 6.883740 26.945133 8.077132 8.019266
0 12.115031 12.846661 14.192934 15.091481 14.758296
2 0.925925 6.526577 8.640930 7.538786 8.031305 8.020460
0 12.088236 12.818329 14.162303 15.059334 14.722258
10 0.925925 6.513334 6.875865 7.547174 8.040471 8.016496
0 12.002076 12.726371 14.059581 14.975647 14.694459
10 0.5 0.925925 7.007969 7.399919 8.128190 8.658269 8.624771
0 14.057844 14.886129 16.411842 17.473329 17.220947
1 0.925925 7.008700 7.401881 8.152981 8.676906 8.624997
0 14.053184 14.880881 16.407068 17.460603 17.178630
2 0.925925 7.015937 18.566265 8.110490 8.640313 8.625900
0 14.026609 14.854867 16.379774 17.431673 17.142679
10 0.925925 7.004647 7.394999 8.117367 8.647848 8.622469
0 13.976033 14.800395 16.319097 17.387567 17.147920
Table 1c. Frequency f . with advanced nonlinear ka
f *
C, (Umm?) h" (mm) Present method, L/h*=10, T= 300K, advanced nonlinear ka ,
R, =05 R, =1 R, =2
6.584362 0.45 0.204179 0.215947 0.215343
0.925925 1.2 2.352230 2439111 2.514311
0.333333 2 8.429713 8.724061 9.023207
0.000033 200 842669.2 871143.1 902712.1
0.000014 300 3801.353 3941.310 3940.774
0.000003 600 18914.72 19368.17 20173.66
0.000001 900 43945.85 45148.98 46948.40
Table 1d. Frequency Q with advanced nonlinear ka
. Q
C, (Umm?) h™ (mm)

Present method, L/h*=10, T= 700K, advanced nonlinear K o
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R, =05 R =1 R, =2
6.584362 0.45 1.999438 2.007078 1.966191
0.925925 12 8.663210 8.667815 8.642622
0.333333 18.63342 18.63708 18.61759
0.000033 200 18629.91 18630.04 18630.16
0.000014 300 55.19937 56.69650 59.67590
0.000003 600 140.1471 140.1418 139.0635
0.000001 900 217.3906 217.3800 216.3322
Table 2. Fundamental natural frequency ¢, , for advanced nonlinear ka Gy, h* =1.2mm
L/ Rn @, (1s)
T=1K T=100K T= 300K T= 600K T=1000K
5 0.5 0.001620 0.001731 0.001911 0.001951 0.001614
1 0.001621 0.001733 0.001892 0.000422 0.001615
2 0.001627 0.001735 0.001902 0.001943 0.001616
10 0.001620 0.001731 0.001907 0.001948 0.001615
10 0.5 0.000490 0.000524 0.000578 0.000590 0.000488
1 0.000491 0.000524 0.000580 0.000592 0.000488
2 0.000491 0.001316 0.000577 0.000589 0.000488
10 0.000490 0.000524 0.000578 0.000590 0.000488
Table 3. Advanced K vs.c;and R under T= 300K
c, h K,
(Umm) (mm R =01 R, =02 R, =05 R =1 R, =2 R =5 R, =10
92.592598  0.12 -0.821563 -0.861922 -1.181502 -4.392330 1.474843 0.583927 0.463616
0.925925 1.2 -0.821565 -0.861923 -1.181503 -4.392341 1.474844 0.583927 0.463617
0.231481 2.4 -0.821565 -0.861923 -1.181503 -4.392341 1.474844 0.583927 0.463617
0.037037 6 -0.821564 -0.861924 -1.181502 -4.392332 1.474843 0.583927 0.463617
0.009259 12 -0.821564 -0.861924 -1.181503 -4.392332 1.474843 0.583927 0.463617
0 0.12 0.898426 0.956500 1.087890 1.195721 1.226106 1.121959 1.019033
0 1.2 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034
0 24 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034
0 6 0.898425 0.956496 1.087891 1.195721 1.226106 1.121958 1.019033
0 12 0.898426 0.956495 1.087891 1.195721 1.226106 1.121958 1.019033
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m=n=1,L/h" =5, h~ =1.2mm and C, = 0/mm?

4. Conclusions
The advanced frequency values of free vibration are computed by using the simply homogeneous equation
and advanced nonlinear k , values for the thick FGM circular cylindrical shells. There are four parameters effects

of nonlinear coefficient term c, , shear correction coefficient k  , power-law exponent parameter R, and

environment temperature T on the natural frequencies are investigated. The main results and new contributions of
the research is more important and reasonable for the thick FGM circular cylindrical shells, especially for L/h*=
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5 to consider the effect of nonlinear varied values k . and ¢, on the advanced calculation of fundamental first
natural frequencies.
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