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Abstract: This article demonstrates a statistical method to update the uncertainty in the flexural strength of silicon 

carbide, α-SiC. The previously reported uncertainty for the flexural strength of α-SiC was a constant ±15%.  

However, this uncertainty should be adjusted as more data becomes available.  A Bayesian approach is proposed 

to rapidly and precisely update the uncertainty.  To validate the method, five scenarios are demonstrated.  The 

first scenario assumes the experimental data is distributed as the model predicts.  The second and third scenarios 

have the model underestimating and overestimating flexural strength, respectively.  The fourth and fifth scenarios 

use data from a thermo-mechanical fracture model.  The thermo-mechanical fracture model introduces a change 

in the temperature transition of flexural strength.  The uncertainty decreased from 15% to a range between 8.3% 

and 13.4%.  Two parameters are inferred in the fourth scenario while five are inferred in the fifth scenario.  

Inferring five parameters leads to more consistent uncertainty across temperature. 

 

 

Nomenclature 
 

α A parameter in the flexural strength model 

β A parameter in the flexural strength model 

γ A parameter in the flexural strength model that controls the steepness of the temperature transition 

δ A parameter in the flexural strength model that controls the midpoint of the temperature transition 

ε Model inadequacy 

ζ A parameter in the flexural strength model 

θ The set of parameters α, β, γ, δ, ε, ζ 

θ' The proposal set of parameters in the random walk algorithm 

δε 
Standard deviation of the model inadequacy.  The model inadequacy accounts for uncertainty due to the 

model itself and uncertainty due to the experimental error 

δQ Standard deviation of the step size in the random walk algorithm 

p(θ) Prior probability density function (PDF) of the parameter set 

p(FS*|θ) Likelihood of the observed flexural strength data given the parameter values 

p(FS*) Model evidence, a normalizing factor 

p(θ|FS*) Posterior PDF of parameters 

FS Flexural strength (MPa) 

Q Step taken in the random walk algorithm 

T Temperature ℃ 
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1. Introduction 
 

In the field of Integrated Computational Materials Engineering (ICME), uncertainty in model predictions is 

unavoidable [1]. There are multiple sources of uncertainty in ICME and a thorough uncertainty quantification 

(UQ) is challenging. A recent publication reported a UQ of an experimental data set of α-SiC [2].  However, 

Štubňa, et al. [2] focus on the uncertainty of a fixed set of data and does not allow for real-time update.  What is 

needed for the ceramics manufacturing community is a live uncertainty update as new data becomes available [3].  

The flexural strength of α-SiC specimens vary due to inconsistencies in manufacturing processes [4].  For example, 

machining tools undergo wear and form imperfections leading to microstructure and surface defects [5−7]. These 

wears are major sources of uncertainty in the flexural strength of α-SiC. A wide variety of manufacturing 

techniques, from ultrasonically vibrating the workpiece [8] to water jets [9], aim at alleviating the surface defects 

but do not entirely remove them [10]. These unavoidable defects cause inconsistency in ceramic product 

performance.  An uncertainty update from the most recent testing data will support the consistent quality of 

ceramics in production. 

Ceramic Matrix Composites (CMC's) have the advantage of being resistant to high temperatures and light 

weight.  The temperature limit before weakening of CMC's with a SiC matrix (the part that is not fiber) is ~1800 ℃.  

Some interesting applications of CMC's are brake discs for cars, high-speed trains and elevators [11]. They are 

candidate materials for nuclear fuel cladding [12] and hypersonic aeroengines [13]. At smaller size, they are a 

promising as a semiconductor material [14]. Gas turbines are yet another application of CMC's [15]. These 

produce electricity from a fuel gas, such as natural gas or hydrogen. Yet again, the high temperature resilience 

and low density are cited as advantages of CMC's. In this article, the flexural strength of α-SiC and its uncertainty 

are modeled over a range of temperatures, 0 ℃ to 1600 ℃. A Bayesian uncertainty update demonstrates how 

different synthetic data sets influence the uncertainty [16].  In addition, the number of inferred model parameters 

is discussed.  One may envision this tool as a quality assurance tool for manufacturing or a comparison tool for 

testing manufacturing methods. 

There exists a need for methods that update uncertainty in a model as new data becomes available.  Such 

methods have been developed and implemented with varying levels of maturity [17].  An example of updating 

model predictions and uncertainty are the state of charge and state of health of a battery [18].  One of the oldest 

yet of proven practical importance, for example in guidance and navigation, is the Kalman filter [19].  This method 

makes assumptions about model linearity and all uncertainties being of a Gaussian distribution.  The extended 

Kalman filter removes some of the nonlinearity by obtaining an approximate Jacobian [20]. The unscented 

Kalman filter expands to a general non-linear model but retains Gaussian distributions [21].  A particle filter does 

use Bayes' formula [18], but obtaining the particles is done more cheaply than the Markov chains of batch 

Bayesian inference.  In the application here, destructive bending tests of ceramic bars provide updated data much 

slower than the time needed for a batch Bayesian inference.  The method applied in this article is most accurately 

classified as batch Bayesian inference. 

The term credible intervals is used when describing the uncertainty distributions [22].  Credible interval 

makes a distinction from the frequentist view of probability.  The uncertainty here derives from a lack of 

knowledge of the flexural strength of the SiC bar, though it was in fact determined by its manufacturing process.  

If one knew the exact process parameters by which a ceramic was produced along with a perfectly accurate 

physical model, the flexural strength of the bar would be known exactly. 

There have been a number of studies using Bayesian methods for ceramics.  Oh et al. [23] used a sporadic 

data set of 82 data points with which to find important chemical properties or features, in predicting the critical 

thin film thickness to achieve stress relaxation.  The machine-learning models they compared were nearest-

neighbor regression, kernel ridge regression, Bayesian ridge regression and a support vector machine.  The feature 

sets of material properties were organized qualitatively into four sets, including ionic properties, general phase 

features and others.  The Bayesian ridge regression was shown to be the most consistently accurate in predicting 

critical thickness for stress relaxation.  Portune et al. [24] used a Bayesian update on a UQ of the transition velocity 

of ceramic armor material.  The transition velocity is the minimum velocity for a projectile to penetrate a material.  

These works suggested the effectiveness of the Bayesian approach.  However, Bayesian statistics have not yet 

been explicitly applied to flexural strength, which is one of the important ceramics performance indicators. 

In industry, when new material suppliers are included or new sub-contracts are retained,} the quality of the 

final product constantly needs to be re-evaluated.  The proposed Bayesian statistics tool can be used to investigate 

various scenarios and manage the uncertainty caused by the new change [25].  In this study, a Bayesian approach 

is used to investigate the impact of the change on the uncertainty.  The prior model is consistent in all scenarios 

from the experimental data from literature [26]. The prior data is from the leading Munro uncertainty 

quantification model.  Though problematic, it is the best starting point from which to perform tests and evaluate 
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various scenarios.  Munro’s ±15% absolute bounds [26] translated to the 95% credible interval here. The scenarios 

are a broad view of plausible changes in flexural strength over temperature due to a new change in a manufacturing 

environment.  The scenarios cannot be comprehensive, though, because there are infinite possible flexural strength 

changes that could be encountered.  However, the model evidence is an indicator when the model begins to fail 

and cannot reconcile with the experimental data.  Taken in another way, model evidence is a tool to assess that 

the model is still reliable and that the Bayesian update from the experimental data is operating properly. 

Here, the Theory/Calculation section lays out the Bayesian update framework in the context of flexural 

strength of α-SiC as a function of temperature.  The Bayesian update algorithm is summarized.  The Results and 

Discussion section states the specifics of the scenarios and computational decisions related to the random walk 

algorithm that implements the Bayesian update.  The improvements in goodness-of-fit and uncertainty bounds for 

each of the scenarios is reported.  The first three scenarios make use of synthetic experimental data with one 

inferred parameter.  The fourth and fifth scenarios use thermo-mechanical fracture model data [27].  The 

difference between the fourth scenario and the fifth scenario is the number of inferred parameters.  The fourth 

scenario infers two, and the fifth scenario infers all five of the model parameters.  Comparison of the model 

evidence between the fourth and fifth scenarios illustrates how to choose the number of inferred parameters.  The 

overall result is a useful and general tool to manage uncertainty in α-SiC other than universally using ±15%.  All 

code to reproduce this work is available [28]. 

 

 

2. Theory and calculation 
 

Each instance that Bayesian inference is applied to a new model and new data sets, there arise questions 

about how to set the likelihood hyperparameter and which parameters to infer.  In addition, in the case of the 

model and data in this article, there multiple data points from a temperature interval, making a data set that is 

treated as a single multidimensional data point.  The likelihood accounts for each deviation from a model 

prediction and the result of a bend test at each temperature.  Subsequent to the Bayesian inference, three metrics 

evaluate the posterior results.  First, the change in the 95% credible interval is computed and reported.  The goal 

is to reduce this credible interval from prior to posterior.  Second, the R2 of the mean of the credible interval to 

the data measures the goodness-of-it.  Still, the credible interval is a distribution that contains more information 

than the mean.  Therefore, the Kullback-Leibler divergence measures the change in the distribution [29, 30].  No 

change would be a Kullback-Leibler divergence of zero.  While the model in this article contains five parameters, 

a test is made for whether inferring only two parameters is more effective.  The Bayesian concept of model 

evidence [30] is used to formally make that determination here.  Using the same data set, the model evidences 

from inferring two parameters and five parameters are compared. 

The flexural strength model from Munro [26] is, 

𝐹𝑆(𝑀𝑃𝑎) = (359 +
87.6

1 + 208600𝑒−0.012𝑇
) ± 15% (1) 

FS is flexural strength (MPa) and T (℃) is temperature with an uncertainty of ±15%.  The values in Equation 

1 are replaced with parameters to yield, 

𝐹𝑆(𝑀𝑃𝑎) = (𝛼 +
𝛽

1 + 𝑒−𝛾(𝑇−𝛿)
) 𝜁 + 𝜖 (2) 

𝛼, 𝛽, 𝛾, 𝛿 and  𝜁 are parameters. 𝛾 controls the steepness of the slope of the flexural strength transition and  

𝛿  controls the temperature center point of this transition. 𝜖  is the model inadequacy to predict experiments 

beyond the parameter uncertainty. 

The original uncertainty of ±15% is a uniform probability density function (PDF).  In contrast, parameters 

in this article are modeled with a Gaussian.  In a Gaussian PDF, 68%, 95% and 99.5% of the data fall within one, 

two and three standard deviations of the mean, respectively. 

Bayes' formula is, 

𝑝(𝜃|𝐹𝑆∗) =
𝑝(𝐹𝑆∗|𝜃)𝑝(𝜃)

𝑝(𝐹𝑆∗)
 (3) 

In Equation 3, the prior uncertainty, 𝑝(𝜃), is model uncertainty before an experimental observation data set 

arrives [31]. The posterior uncertainty, 𝑝(𝜃|𝐹𝑆∗), is the result of the Bayesian update [32]. The likelihood, 

𝑝(𝐹𝑆∗|𝜃), is a PDF returning the probability of a prediction and its distance to experimental observations. The 

model evidence, 𝑝(𝐹𝑆∗), is a normalizing term.  The model evidence ensures the integral of the posterior PDF 

equals one. 

For the prior in this article, a Gaussian PDF of Equation 4 with a reasonable shape is assigned to each 

parameter.  The likelihood is also Gaussian, i.e., 
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𝑝(𝐹𝑆∗|𝜃) =
1

√2𝜋𝜎𝜖
𝑒
−
∑ (𝐹𝑆𝑇−𝐹𝑆𝑇

∗ )2𝑇

𝜎𝜖
2

 (4) 

𝜃  is the set of parameters containing 𝛼, 𝛽, 𝛾, 𝛿 𝑎𝑛𝑑 𝜁.  Experimental data for flexural strength is denoted 

𝐹𝑆𝑇
∗ .  When the experimental observation is further away from the model prediction, 𝐹𝑆𝑇, the likelihood 𝑝(𝐹𝑆∗|𝜃) 

decreases.  The asterisk, *, denotes benchmark data which is either synthetic data or predictions from a thermos-

mechanical fracture model. The T index is for the various temperatures at which there are flexural strength 

transitions.  For any given 𝜃, there are multiple flexural strength predictions and data over the temperature range. 

Therefore, a summation is taken over temperature, T, in the likelihood. 

Equation 4 has introduced a hyperparameter, 𝜎𝜖.  A hyperparameter is a parameter that is not in original 

model, but it appears in Bayes' formula.  By necessity, a Gaussian PDF must have this standard deviation, 𝜎𝜖. The 

choice of value for 𝜎𝜖 influences the result of Bayes' formula.  Fortunately, there are clear indications when a poor 

choice of 𝜎𝜖 has been made.  A poor 𝜎𝜖 will lead to the reduction of model evidence or an increase in uncertainty.  

Between these two extremes, a smaller 𝜎𝜖 drives the posterior more to goodness-of-fit to the data and away from 

the prior.  An interpretation of 𝜎𝜖 is the standard deviation of model inadequacy.  A model is inadequate because 

it is often a simplified representation and does not account for measurement error. Although model inadequacy 

refers strictly to the model and not the measurement error [22], in this article the terms are lumped together in 

model inadequacy. 

A random walk algorithm is used to sample the posterior, 𝑝(𝜃|𝐹𝑆∗). A numerical approach is needed because 

the data is a non-linear function over temperature and data across temperature are used in the Bayesian inference 

[31]. The model contains exponents that are by nature highly non-linear.  The exponent is also in the denominator 

with two terms.  An analytical solution would be effective for a polynomial model but not for this model. By 

design, the random walk algorithm samples proportionally to the probability. The samples therefore form the PDF.  

Metropolis-Hastings Markov Chain Monte Carlo (MCMC) is used in this study [31].  The MCMC takes proposal 

sample around the current sample.  A proposal sample, 𝜃′ is taken as shown by Equation 5. 

𝜃′ = 𝜃 + 𝑄 (5) 

In this article, Q is randomly sampled from an identical Gaussian PDF as the prior, 𝑝(𝜃). The covariance of 

Q is a diagonal matrix with the diagonal entries based upon the prior variance of the parameters. Q does not have 

to be exactly the prior, but it is a justified choice because it ensures that the proposal samples are on the same 

scale as the parameters.  The exact accept or reject probability of any proposal step is [31], 

𝑝(𝜃′) =

{
 
 

 
 1, 𝑤ℎ𝑒𝑛 

𝑝(𝐹𝑆 ∗ |𝜃′)𝑝(𝜃′)

𝑝(𝐹𝑆 ∗ |𝜃)𝑝(𝜃)
≥ 1

 
𝑝(𝐹𝑆 ∗ |𝜃′)𝑝(𝜃′)

𝑝(𝐹𝑆 ∗ |𝜃)𝑝(𝜃)
, 𝑤ℎ𝑒𝑛 

𝑝(𝐹𝑆 ∗ |𝜃′)𝑝(𝜃′)

𝑝(𝐹𝑆 ∗ |𝜃)𝑝(𝜃)
< 1

 (6) 

The mean of the prior is chosen as the starting point of the MCMC in this article.  The beginning of the 

MCMC samples are cut out as part of the burn-in process when computing the posterior PDF.  The burn-in samples 

are needed because the posterior distribution is not known before the MCMC starts.  Both the number of burn-in 

samples and the total number of samples are selected to accurately generate a consistent posterior. 

Kullback-Leibler divergence is computed to measure the amount of learning for each parameter that is 

inferred.  Kullback-Leibler divergence is defined in Equation 7. 

𝐷𝐾𝐿(𝑃||𝑄)  =  ∫𝑥 𝑝(𝑥)𝑙𝑜𝑔2  (
𝑝(𝑥)

𝑞(𝑥)
) (7) 

𝐷𝐾𝐿(𝑃||𝑄) is the Kullback-Leibler divergence of PDF P from PDF Q.  PDF P is the posterior and PDF Q is 

the prior. 𝑥 is the parameter that is being evaluated. For example, 𝑥 is 𝜁 in scenarios 1-3.  When divide-by-zero 

of log-of-zero is encountered, the integration area contributes zero. 

In the first scenario, it is assumed that the mean from the prior data sets stay unchanged.  The prior data sets 

[26] are a collection of four experimental data sources [33–36]. In one of those sources, the 𝛼-SiC was doped with 

𝑍𝑟𝑂2 [33].  Another source was of 𝑆𝑖𝐶 − 𝑇𝑖𝐵2 composites [34].  Therefore, the prior data sets are a less than 

perfect representation of 𝛼-SiC, since they contain a variety of SiC.  Nonetheless, the purpose of this scenario is 

to demonstrate that the uncertainty shrinks as data confirms the model predictions.  The prior was set to replicate 

the ±15% credible interval from literature as much as possible. The experimental data that led to the ±15% 

credible interval from Munro [26] is not used a second time at all in the scenarios in the current work.  Rather, 

synthetic experimental data is created and also data from a high-fidelity thermo-mechanical fracture model is used 

[27]. Beyond taken the literature precedent for prior uncertainty, reasonable prior uncertainties are assigned to 

parameters such that the prior model prediction is not completely uncertain yet uncertain enough to allow for 

adapting to new data.  The second and third scenarios have noisy data with an added and subtracted mean of 25 

(MPa), respectively.  The second scenario is the case of the model underestimating the flexural strength, and the 
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third scenario is the model overestimating the flexural strength. The fourth scenario uses multiple data 

representing different material properties at each temperature as predicted by a thermo-mechanical fracture model 

implemented in the MOOSE software framework [27].  The fourth scenario exhibits a late temperature transition 

in flexural strength and a second parameter is inferred.  The fifth scenario uses the same data but uses all five 

parameters for inference.  The Bayesian model evidence is used to compare the fourth and fifth scenarios to weight 

goodness-of-fit versus overfitting (Occam's razor) in choosing the best course.  The data in the first three scenarios 

is independent and identically distributed.  In the fourth and fifth scenarios, the data are from physics model 

prediction. 

 

 

3. Results and discussion 
 

The uncertainty decreases in all of the five scenarios, and the goodness-of-fit based upon the mean improves. 

The number of samples is 250,000, and the burn-in number of samples is 10,000. In the first scenario, synthetic 

experimental data is generated by adding zero-mean noise to the model. The standard deviation of the noise is set 

to 20 (MPa).  In the likelihood, 𝜎𝜖 is likewise set to 20 (MPa).  It should be noted that knowing the amount of 

ordinary variation is helpful in selecting 𝜎𝜖 for different applications. The posterior uncertainty of scenario one 

was 11.2% at lower temperatures (20 ℃ to 600 ℃) and 9.1% at higher temperatures, compared to the prior 15% 

uncertainty.  This uncertainty numbers are the 99.5% credible interval. 

In the second scenario, an underestimation of flexural strength may be due to increasing residence time 

during chemical vapor infiltration (CVI) [15].  Alternatively, a proper temperature and pressure regime for a CVI 

precursor may achieve almost no excess Si [37].  These steps may increase flexural strength (the second scenario).  

An overall overestimation of flexural strength in the third scenario may be due to a more defective manufacturing 

than thought previously.  For instance, a finishing tool could be worn and chipped [38]. The second and third 

scenarios use a shift of 25 (MPa) from the prior model mean.  The choice of 20 (MPa) for σϵ matches the added 

noise and leads to reasonable prior and likelihood probabilities.  Scenario two results in 10.2% uncertainty at low 

temperatures (20 ℃ to 600 ℃) and 8.2% uncertainty at higher temperatures.  Scenario three's posterior uncertainty 

is 11.6% at low temperatures (20 ℃ to 600 ℃) and 9.4% at high temperatures.  These results are summarized in 

Table 1.  The credible interval is defined as 99.5% of the probability. The 99.5% is the same as three standard 

deviations above or below the mean. The results of the underestimation and overestimation scenarios are displayed 

in Figure 1. 

At this juncture, data from a thermo-mechanical fracture model is introduced for scenarios four and five [27, 

39]. Thus far, the first three scenarios have involved synthetic experimental data inferring one parameter, 𝜁. 

Inferring these two parameters, 𝛿 and 𝜁, from the thermo-mechanical fracture model data is scenario four.  The 

thermo-mechanical fracture model data exhibits a late-temperature transition in flexural strength.  Inferring 𝛿 

allows for changing the midpoint of a temperature transition to match.  It is known that SiC forms oxidation layers 

at high temperatures [11].  Such oxidation layers are the physical source of the temperature transition in flexural 

strength [26]. The oxidizing conditions and the material itself influence the formation of oxide layers.  

Consequently, oxide layers cause a noticeable change in flexural strength as a function of temperature.  However, 

the temperature effect is not consistently observed.  Ghosh et al. [36] found no change in flexural strength over 

their tested temperature range of 0–1400 ℃. Becher [35] detected a slight upward transition at a lower temperature 

starting at less than 1000 ℃. Therefore, the model should be able to adapt to data with a different flexural strength 

transition over temperature.   The fourth scenario does change the temperature transition, as seen in Figure 2, and 

as evidenced by an increase in 𝑅2 from zero to 0.57.  The posterior uncertainty is 11.6% at low temperatures (20 ℃ 

to 600 ℃) and 13.4% at high temperatures. 
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Figure 1. Bayesian update for scenarios two and three.  (a) Synthetic data shifted up (scenario two).  (b) 𝜁 parameter prior (c) 𝜁 parameter 

posterior scenario two. (d) Synthetic data shifted down (scenario three). (e) 𝜁 parameter posterior scenario three 

 

 
 

Figure 2. Thermo-mechanical fracture model data in the fourth scenario.  Two parameters are inferred.  (a) 𝜁 parameter prior. (b) 𝛿 

parameter prior. (c) Prior and posterior flexural strength with uncertainty from Bayesian update.  (d) 𝜁 parameter posterior. (e) 𝛿 parameter 

posterior. 𝛿 parameter has shifted right from its prior of 1020 

 
Table 1. Improvement in credible intervals and learning as measured by Kullback-Leibler divergence 

 

 
Low temperature 

uncertainty 

High temperature 

uncertainty 

Kullback-Leibler 

divergence 

Scenario 1- centered 11.2% 9.1% 1.28 

Scenario 2- shifted up 10.2% 8.2% 1.33 

Scenario 3- shifted down 11.6% 9.4% 1.31 

Scenario 4- Thermo-mechanical fracture model 11.6% 13.4% 
δ = 6.8 × 10−4 

ζ = 0.90 

Scenario 5- Thermo-mechanical fracture model with 

five parameters 
11.6% 12.1% 

δ = 8.8 × 10−4 

ζ = 0.79 

 

The fifth scenario serves the purpose of testing model evidence. The fifth scenario uses the data from the 

thermo-mechanical fracture model, the same data as the fourth scenario. The model evidence for using all five 

parameters was 2 × 10−8 while the model evidence for inferring two parameters was 9 × 10−6. Nonetheless, the 

uncertainty level is more consistent across temperature than the fourth scenario, i.e., the uncertainty is between 

11.6% and 12.1%. As more data becomes available, the uncertainty will decrease, unless the data is conflicting. 

This is the most consistent uncertainty across temperature for all of the scenarios.  The difference from the fourth 

scenario is that all of the parameters are updated with Bayesian statistics.  With more relaxed parameters, the 

model is more free to fit to the data. 
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The consistent uncertainty across temperature suggests that the overall shape of the data has been captured 

better than the fourth scenario. The model evidence is three orders of magnitude less. The decrease in model 

evidence is from the extra parameters causing shrinking prior probabilities. In principal, inferring more parameters 

allows for a better goodness-of-fit when the experimental data curve is very different from the prior model curve.  

It should be noted that inferring more model parameters is built-in penalty in Bayesian statistics for over-fitting 

the data. This is useful to know because it is a mistake to over-fit to the data. 

The parameters in this article have been modeled with Gaussian distributions.  However, ceramic failures 

may be defined by Weibull PDF's.  As a test, the 𝜁 parameter that controls the uncertainty bounds can be set to a 

Weibull PDF prior. Using scenario three as an example, the resulting posterior from the Bayesian update yields 

an uncertainty bound of ±11.5% at low temperatures (20 ℃ to 600 ℃) and ±9.3% at high temperatures.  The 

Weibull prior provides only a marginal improvement to the Gaussian prior. 

𝜎𝜖  may be inferred as a hyperparameter to yield the best results. When inferring 𝜎𝜖  in Scenario 4, the 

maximum uncertainty at low temperatures is 11.4% and 13.6% at high temperatures. The results in terms of 

reducing uncertainty are an improvement because the uncertainty was reduced at every temperature except at the 

single highest temperature point. The mean 𝜎𝜖 was inferred to be 24.5 (MPa) compared to the estimated 20 (MPa).  

The results reported in this article are batch Bayesian inferences. It is conceivable in a manufacturing 

environment that Bayesian inferences would be conducted online. In that way, the posterior becomes the prior 

until the next set of data arrives. This is referred to as a particle filter [18].  In addition, the Bayesian paradigm is 

capable to expand to more complex multi-scale models [40]. 

 

 

4. Conclusions 
 

This work has placed uncertainty management in a rigorous mathematical framework (exact, flexible, 

scalable and rapid).  Previously, uncertainty quantification was only performed with heuristics and statistics for 

one batch of data without the ability of a real-time update with regards to ceramics' flexural strength. The Bayesian 

update reconciles prior uncertainties with new data that arrives. The variations of the test scenarios in this article 

rigorously validate the flexibility of this approach. The uncertainty has decreased from a constant 15% to between 

8.2% and 13.4%. However, every model is different, and an expert choice on the standard deviation of model 

inadequacy is necessary. Fortunately, model evidence provides feedback on this choice. The model evidence for 

using all five parameters was 2 × 10−8 while the model evidence for inferring two parameters was 9 × 10−6. 

When the likelihood numbers drop to being minuscule, the model evidence decreases as well. The Bayesian 

approach has been shown to be effective in the context of bending tests to obtain flexural strength of a range of 

temperatures for 𝛼-SiC ceramic. One future direction is to develop a surrogate model like the one used here, but 

mixed with with physically meaningful parameters, such as Young's modulus. 
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