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Abstract: In this work, superlattice thin films of CdSe/ZnSe were fabricated on a non-conductive glass substrate using 
the successive ionic layer adsorption reaction (SILAR) method to investigate their properties for possible optoelectronic 
applications. The SILAR process involved a total cycle time of 100 seconds for a complete SILAR cycle with a total of 
12 cycles made by depositing alternative layers of CdSe and ZnSe. The deposited thin films were annealed at different 
temperatures and characterized to determine their optical, elemental, morphological and structural properties using 
UV-Vis spectroscopy, Scanning electron microscope (SEM)/energy dispersive x-ray spectroscope (EDS) and x-ray 
diffraction techniques (XRD). The results of the characterizations revealed that optical properties of the films such as 
absorbance, reflectance, refractive index and extinction coefficient are low but increased as the annealing temperature 
increases. The bandgap energy was found to decrease from 2.50 eV-1.90 eV for as-deposited film and those annealed 
between 373 K and 523 K. Film thickness was found to range from 130.169 nm to 254.441 nm. The EDS results showed 
that the target elements such as Cd, Zn, Se and other elements traceable to the nature of substrate used were found to 
be present in the deposited thin film samples. The results of the XRD showed that the thin films are polycrystalline 
and the diffraction peaks are influenced by annealing of the sample at a higher temperature such as 523 K. The crystal 
parameters such as crystallite size, dislocation density and micro-strain of the film at 523 K were found to be 5.546 nm, 
3.25 × 1016 l/m2 and 1.13 × 10-2. The SEM results showed that the CdSe/ZnSe superlattice films were composed of tiny 
nanoparticles of different dimensions and sizes with hollow which increased as the annealing temperature increased 
from 432 K to 523 K. Possible applications of the deposited superlattice thin films in solar cells and optoelectronic 
devices were established by virtue of their bandgap energy and other properties.
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1. Introduction
The potential for many applications in the fields of electronics and optoelectronic devices exhibited by the group 

II-VI chalcogenide semiconductor materials like CdSe, ZnSe and others have led many researchers to further investigate 
the applications of the materials at their nanostructure levels. Research has shown that metal chalcogenides in the case 
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of CdSe and ZnSe semiconductors are good materials for applications in photovoltaic solar cells, photo-detectors, light 
amplifiers, lasers, gas sensors, large screen liquid crystal display, photoluminescence response, light-emitting diodes, 
photo-catalysis, and optically sensitive devices applications ([1-3]. These applications have been attributed to the high 
absorption coefficient and optimum bandgap energy the materials possessed for efficient light absorption and consequent 
conversion of the light energy to electrical energy [4]. 

CdSe is an n-type semiconductor material of the group II-VI chalcogenide family which has a direct bandgap 
energy of ~1.80 eV for wurtzite crystal phase and ~1.71 eV for zinc blende crystal phase structures. This singular 
property has been tipped to position the CdSe as excellent material for optoelectronic applications including biomedical 
imaging as human tissue is permeable to near infra-red light and the bandgap favors absorption in the visible and near-
infrared range [5-7]. On the other hand, ZnSe is an important n-type semiconductor but has a direct bandgap energy 
of 2.70 eV [8-9] and has been known to be a highly photosensitive semiconductor as its bandgap ranges in the visible 
region of the electromagnetic spectrum [10]. The quest by the researchers to further study the characteristics of these 
semiconductor materials at their atomic and nanostructure levels has led to the manipulations of the materials through 
many processes such as doping with different elements and fabrications of layers of these materials on top of one 
another [11-12]. 

To this effect, many deposition methods have been used to fabricate different thin film structures of CdSe and 
ZnSe to study their basic properties for applications. [13-14] used the electrodeposition method to fabricate thin films of 
CdSe/ZnSe and stated that the superlattice films of CdSe/ZnSe are good materials to be used for antireflection coatings. 
The thin films of Zn1-xMgxS deposited using RF magnetron co-sputtering technique by [15] are influenced by Mg ion 
doping and tuned the bandgap energy to values that range from 4.39 eV to 3.25 eV which was found to be useful for 
window layers of thin film photovoltaic devices. Yttrium doped CdSe thin film deposited using the spray pyrolysis 
method has been reported by [16] that showed various influences of Yttrium on different properties of the CdSe films. 
The results showed that the influence of Y: CdSe and annealing temperatures positioned the films as a better material 
for use in photovoltaic, electronic, and optoelectronics applications. The effect of Mn-doped ZnSe passivation layer 
on the performance of CdS/CdSe quantum dot sensitized solar cells fabricated using the SILAR method reported by 
[17] showed that Mn-doped ZnSe as a passivation layer on the surface of TiO2/CdS/CdSe co-sensitized solar cells 
can effectively improve the power conversion efficiency (PCE) of solar cells by 9% compared to a device without 
manganese doping. [18] used electrodeposition method to fabricate thin films of CdSe and (Fe, Mn) doped CdSe and 
reported that the undoped CdSe, Fe-CdSe and Mn-CdSe thin films can be used as solar cell and photoelectrochemical 
(PEC) cell materials. The effect of different selective ligands such as thiols 3-mercaptopropionic acid (MPA), 
thioglycolic acid (TGA), and L-glutathione (GSH) on the properties of ZnSe and ZnxCd1-xSe QDs deposited using 
water-based route to ligand-selective synthesis have been reported by [19]. Their results showed that the ligands have 
different effects on the optical, structural and morphological properties of the materials. Other methods that can separate 
QDs from reaction constituents and link them with other materials to utilize them for biological labels, biosensors, light-
emitting diodes, lasers devices applications were suggested by the authors. [20] used the atomic layer deposition method 
to fabricate ZnSe/CdSe superlattice nanowires and concluded that the nanowires are single crystal but comprised of 
alternating layers of lattice plane (111) oriented ZnSe and CdSe which were oriented at 60° to each other. 

In this work, superlattice thin films of CdSe/ZnSe were fabricated using the SILAR method. Deposited superlattice 
films were annealed at a varying temperature ranges from 373 K to 523 K. Effects of annealing temperature on the 
optical, morphological and compositional properties of the deposited superlattice thin films were determined. Structural 
analysis was used to confirm the formation of CdSe and ZnSe thin films. 

2. Materials and method
2.1 Materials

The reagents used for the synthesis of the superlattice thin films of the CdSe/ZnSe are cadmium (II) chloride 
hemi(pentahydrate) (Kermel), zinc (II) acetate dehydrate (Qualikems), selenium (IV) oxide (JT Baker Chemical 
Company), sodium borohydride (Kermel) and sodium hydrogen selenide. All the chemicals used for this experiment 
were of analytical grade and were used without further purification. Sodium hydrogen selenide was prepared by reacting 
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selenium (IV) oxide with sodium borohydride at room temperature. Freshly prepared sodium hydrogen selenide was 
used for the experiment because it decomposes in moist air with the formation of polyselenides and precipitation of Se.

2.2 Experimental details

The reagents are of analytical grade and were used without further purification. Preferred molar solutions of the 
reagents were prepared using the general equation (1) to determine their reacting mass.

   
1000

molarity molar mass volumeReacting Mass × ×
= (1)

0.20 M of cadmium (II) chloride hemi(pentahydrate) and 0.20 M of zinc acetate dihydrate were prepared by 
dissolving 22.84 g and 21.95 g of the compounds respectively in 500 mL of distilled water. These prepared solutions 
of the compounds served as precursors for Cd2+ and Zn2+. Sodium hydrogen selenide was used as the precursor for 
selenium ion and was prepared by a reaction between sodium borohydride and selenium (IV) oxide at room temperature. 
The reaction involves the mixture of 40 mL of 0.05 M of selenium (IV) oxide with 40 mL of 0.03 M of sodium 
borohydride. The solution was freshly prepared before its use as it is relatively unstable. Before the deposition, the 
substrates were soaked in trioxonitrate (V) acid for 48 hours, washed with detergent and rinsed with distilled water. The 
substrates were subjected to ultrasonic cleaning with a solution of acetone in water of volume ratio (3:1) at 50 °C for 30 
minutes. The degreased substrates were rinsed 3 times with distilled water and finally dried in an electric oven at 60 °C 
for 15 minutes. 

The superlattice thin films of CdSe/ZnSe were synthesized at room temperature using the successive ion layer 
adsorption reaction (SILAR) method. The temperature of the laboratory during deposition was found to be 27 °C (300 
K). Four beakers were used with the first beaker labeled A containing cationic precursors (CdCl2 or Zn(ace)), the second 
beaker labeled B containing ionic exchange medium (distilled water), beaker C containing anionic precursor (NaHSe) 
while the last beaker labeled D contains ionic exchange medium (distilled water). The SILAR process involved a total 
cycle time of 100 seconds for one complete cycle and included the following four steps as demonstrated in Figure 1.

Immersion of cleaned substrates in first reaction beaker (A) containing Cd2+ precursor solution for 40 s to absorb 
Cd2+ on the surface of the substrate.

These substrates were rinsed in high purity distilled water for 10 s to remove excess Cd2+ that are loosely adherent 
to the glass substrates (achieved in the previous step).

The substrates were then immersed in the anionic precursor solution of freshly prepared NaHSe for another 40 
s. The selenide (Se2-) ions reacted with the absorbed Cd2+ on the active center of the substrates to form metal selenide
films.

Again, the substrates were rinsed in distilled water for 10 s to remove loosely bound ions present on the substrates 
and unreacted cations and anions and this completed one cycle. 

The above process was repeated for six alternating layers of both CdSe and ZnSe and which completed the 
formation of superlattice thin film layers of CdSe/ZnSe. Figure 1 shows the experimental step-up for SILAR deposition 
of CdSe and ZnSe thin film layers. The alternating layer deposition implied the deposition of a single layer of CdSe 
thin film followed by deposition of a single layer of ZnSe thin film. This alternating procedure was repeated on the 
same substrates five more times for each binary selenide. Five samples of the CdSe/ZnSe superlattice thin films were 
fabricated. One of the deposited thin films was left unannealed (as-deposited) while four others were annealed at 
different temperatures as illustrated in Table 1. The result is the formation of CdSe/ZnSe superlattice thin film as shown 
in Figure 2.
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Figure 1. Experimental set-up for SILAR deposition of CdSe/ZnSe superlattice thin films
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Figure 2. Schematic description of formed superlattice structure for CdSe/ZnSe thin films
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Table 1. Optimization of annealing temperature for CdSe/ZnSe thin films

Sample name Annealed temp. for 60 minutes (K)

CdSe/ZnSe@300K 300

CdSe/ZnSe@373K 373

CdSe/ZnSe@423K 423

CdSe/ZnSe@473K 473

CdSe/ZnSe@523K 523

2.3 Thin film characterization

Optical and electrical properties were evaluated using UV-VIS spectrophotometer (model: 756S UV-VIS). 
Film thickness was carried out using the gravimetric method. Differences in the weights of the substrates before and 
after deposition were measured using a precision analytical digital balance with a sensitivity of 0.0001 g (0.1 mg). 
Morphological analysis of the film was done using scanning electron microscope (MIRA TESCAN SEM). Structural 
analyses of the thin films were studied using the X-ray diffraction (XRD) machine (Buker D8 high resolution 
diffractometer).

3. Results and discussions
3.1 Optical properties
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Figure 3. Graph of absorbance against wavelength for CdSe/ZnSe thin films (effect of annealing)
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Figure 3 is the graph of absorbance against wavelength and absorption coefficient plotted against photon energy 
for the fabricated superlattice thin films of CdSe/ZnSe annealed at different temperatures to determine the effect of heat 
treatment on their optical properties. The Figure showed that the characteristic peak in the absorbance occurred at the 
UV-A band and increases with an increase in the annealing temperature. The films 523 K and 300 K have the highest 
and lowest values of absorbance respectively in the UV, VIS and NIR regions. The absorbance however decreases 
with an increase in wavelength in the VIS and NIR regions suggesting lower values in the NIR region. This increase 
in absorbance is complemented by a corresponding increase in film thickness. Absorption coefficient values of the thin 
films were found to possess similar variation as absorbance values. Absorption coefficient values of the films were 
found to range from 8.96 × 105 m-1 to 15.42 × 106 m-1. The increase in the absorbance of the films as a result of annealing 
temperature positions them to be used as absorber materials for photovoltaic applications.

The transmittance of the deposited thin films of CdSe/ZnSe was evaluated using equation (2) which gives the 
relationship between absorbance and transmittance as given by [21].

(2)10 AT −=

Where A is the measured absorbance of the films from the spectrophotometer machine.
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Figure 4. Graph of Transmittance (%) against wavelength for CdSe/ZnSe thin films (effect of annealing)

In Figure 4, the graph of percentage transmittance against wavelength for the fabricated thin films annealed at 
different temperatures is presented. The Figure showed that the films have high transmittance but decrease with an 
increase in annealing temperature. The transmittance of the films however increases with an increase in wavelength 
throughout the VIS and NIR regions of the electromagnetic spectrum (EMS). The film 300 K has the highest 
transmittance in the range of 50-90 % while the film 523 K has the lowest transmittance in the range of 15-70 % in the 
VIS and NIR regions. This high transmittance in the NIR region makes the films good materials to be approximated be 
used as a cold mirror when optimized.

The reflectance (R) of the deposited films was calculated using the law of conservation of radiant energy relating to 
absorbance, transmittance and reflectance as shown in equation (3) according to [22-24].
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(3)A T R 1.+ + =

Where A and T are absorbance and transmittance of the films respectively.
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Figure 5. Graph of Reflectance (%) against wavelength for CdSe/ZnSe thin films (effect of annealing)

The graph of reflectance against wavelength for the fabricated thin films CdSe/ZnSe annealed at different 
temperatures is presented in Figure 5. The graph showed that the reflectance of the films is low with maximum 
reflectance of 20 %. The characteristic peaks are shifted towards the VIS region as a result of an increase in annealing 
temperature. The graph also showed that the reflectance decreases with a wavelength in the remaining parts of VIS and 
NIR regions of EMS.

Refractive index of the films was evaluated using the equation (4) as given by [25-28]. 

(4)2
2

1 4
1 (1 )

R R k
R R

η +
= + −

− −

Where R is the reflectance of the films.
The plot of refractive index of the fabricated thin films at different annealing temperatures is displayed in Figure 6. 

The Figure showed that the refractive index of the films is high with the characteristic peaks value of 2.6 being shifted 
towards the VIS region due to annealing of the samples. The refractive increased with an increase in the annealing 
temperature but decreases with a wavelength in the VIS and NIR regions. The high refractive index values of the films 
position them for optical waveguide applications.

The extinction coefficient (k) of the deposited thin films was calculated using equation (5) as given by [29-30]. 

(5).
4

k αλ
π

=
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Where k is called the extinction coefficient or attenuation constant of the film.
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Figure 6. Graph of Refractive index against wavelength for CdSe/ZnSe thin film (effect of annealing)
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Figure 8. Plots of (αhυ)2 against photon energy for CdSe/ZnSe thin films (effect of annealing)

Figure 7 is the graph of extinction coefficient of the films plotted against wavelength. Extinction coefficient is a 
measure of the rate at which light energy is retained or lost in the materials. The graph showed that the films have low 
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values of extinction coefficient but increased with an increase in annealing temperature within VIS and NIR regions. 
The graph also showed that the extinction coefficient of the films decreased as wavelength increased in the VIS and NIR 
regions of EMS. This decrease in extinction coefficient as wavelength increases shows that some fraction of radiation 
was lost due to scattering and absorption of EMS within the films. High extinction coefficient between wavelength of 
315 nm and 485 nm observed in superlattice thin film annealed at 473 K was due to absorption peak at 335 nm. The low 
extinction coefficient exhibited by films makes them suitable materials for many optoelectronic applications.

The optical bandgap energy of the superlattice thin films was calculated using the equation (6) according to [31-32].

(6)( )n
ghv A hv Eα = −

Where h is Planck’s constant and n = 1/2, if the transitions between the upper part of the valence band and the 
lower part of the conduction band are allowed by the selection rules and n = 3/2, if the transition is forbidden, υ is the 
frequency, A is constants and Eg is the optical bandgap energy. The plots of (αhυ)2 against photon energy for the CdSe/
ZnSe thin films annealed at different temperatures are displayed in Figure 8 in order to determine the energy band gap 
of the films. The plots showed that the films have wide band gap values but decrease with an increase in the annealing 
temperature. The band gaps of the films obtained by extrapolating on the photon energy axis at the absorption edged 
where (αhυ)2 = 0 are 2.50 eV, 2.20 eV, 2.15 eV, 2.00 eV and 1.90 eV for the films annealed at 300 K, 373 K, 423 K, 473 
K and 523 K respectively. This noticeable red shift may be a result of increase in crystallite size as rightly revealed by 
XRD results. This resulted in decrease in defect concentration as well as reduced the strain in the film. This decrease 
is due to quantum confinement effect within the thin films. A similar red shift in bandgap due to increase in annealing 
temperature was observed by [33-35]. These bandgap energy values are within the range of bandgap energy reported by 
[36] for CdSe:Zn thin films deposited using electron beam evaporation method. These values are in the range of energies 
for photons in the solar spectrum for solar cell and LED applications.

3.2 Film thickness properties
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Figure 9. Film thickness plotted against annealing temperature for SILAR deposited cadmium selenide/zinc selenide superlattice

The thicknesses (t) of the deposited thin films were evaluated using the gravimetric method given by [37-40]. 
Equation (7) gives the relationship between mass difference of the substrate, density of the thin film compound and 
surface area of the deposited thin film.
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(7)mt
Aρ

∆
=

where Δm is the difference in mass. A is the surface area of the deposited film and ρ is the bulk density of the material 
film. The masses of the deposited films were obtained by finding the difference in mass between the mass of the glass 
substrate and the film after deposition and the mass of glass substrate before deposition.

Table 2. Variation of Film thickness, energy bandgap with Annealing Temperature for CdSe/ZnSe Superlattice thin films 

Annealing Temp. (K) Energy Bandgap (eV) Thickness (nm)

300 2.50 130.167

373 2.20 159.093

423 2.15 202.482

473 2.00 214.266

523 1.90 254.441

Table 2 shows the variation of film thickness with annealing temperature for SILAR deposited CdSe/ZnSe 
superlattice thin films. Figure 9 shows the plot of variation of film thickness with annealing temperature. For CdSe/ZnSe 
superlattice thin films annealed at different temperatures from 373 K to 523 K, values of film thickness were found to 
increase from 159.093 nm to 254.441 nm while as-deposited CdSe/ZnSe superlattice thin film was found to possess 
the least thickness of 130.167 nm. This result showed that the thickness of the superlattice film is been affected by the 
change in annealing temperature from 373 K to 523 K. Similar results of increase in film thickness due to an increase in 
annealing temperature were reported by [41-43]. The increase in film thickness could be due to quantum confinement 
effect and also due to change in barrier height owing to change in grain size of polycrystalline CdSe/ZnSe thin film as 
confirmed by XRD results [44].

3.3 Compositional properties

Figure 10 showed the EDS graphs of SILAR deposited CdSe/ZnSe thin films, as-deposited (300 K) and those 
annealed at 423 K and 523 K. Atomic percentages of the elements present in the deposited thin films were presented 
along with the EDS spectra. The EDS spectra confirmed the presence of Cadmium (Cd), Zinc (Zn), selenium (Se) and 
other elements such as carbon (C), oxygen (O), sodium (Na), Magnesium (Mg), silicon (Si), copper (Cu), calcium (Ca) 
and Chlorine (Cl). These other elements may be due to the composition of the microscopic glass used as a substrate 
for the deposition. As-deposited (300 K) CdSe/ZnSe thin film contained 17.67% of Zn, 21.10% of Cd and 22.17% 
of Se. After annealing at 423 K and 523 K, Zn content was found to decrease to 10.06%, Cd content was found to 
increase from 21.10% at 300 K to 27.61% and 27.08% for 423 K and 523 K respectively while Se content increased 
from 22.17% to 33.64% at 423 K before decreasing to 28.01% at 523 K. These results revealed the dependency of 
compositional properties of CdSe/ZnSe superlattice thin films on annealing temperature. Thin film relatively rich in 
selenium was obtained at 423 K and 523 K.
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Figure 10. EDS spectra of SILAR deposited CdSe/ZnSe thin films at 300 K, annealed at 423 K and 523 K

3.4 Structural properties

Figure 11 shows the x-ray diffraction patterns of as-deposited CdSe/ZnSe thin film at room temperature and CdSe/
ZnSe thin film annealed at 523 K. The X-ray diffractogram of as-deposited CdSe/ZnSe thin films showed a weak peak 
that could not be assigned to any phase of either CdSe or ZnSe which confirmed that the as-deposited CdSe/ZnSe thin 
film has amorphous structure. Diffractogram of SILAR deposited CdSe/ZnSe thin film annealed at 523 K showed peaks 
corresponding to hexagonal phases of cadmium selenide and zinc selenide respectively. Four peaks corresponded to 
standard Powder Diffraction File (PDF) card number 01-077-2307 for hexagonal CdSe. Three peaks corresponded to the 
peaks in the standard Powder Diffraction File (PDF) card number 01-080-0008 for ZnSe [45-46]. The diffraction spectra 
showed an increase in intensity at annealing temperature of 523 K. Also, the result showed that the deposited thin 
films are polycrystalline in nature. No diffraction peaks corresponding to other phases of either ZnSe, CdSe or ternary 
derivatives of the elements were observed. Table 3 shows the structural parameters of CdSe/ZnSe thin films annealed at 
523 K. Slight peak shift was observed between the standard and observed peak values as shown in Figure 3. This shows 
that there is change in the lattice structure of the films at a high annealing temperature of 523 K.
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Figure 11. XRD pattern of cadmium selenide/zinc selenide (CdSe/ZnSe) thin films, as-deposited and annealed at 523 K

Table 3. Crystal structural properties of CdSe/ZnSe thin films

Observed Standard [hkl] FWHM 4sinθ βcosθ

2θ (º) d-spacing (Å) 2θ (º) d-spacing (Å) (º)

23.934* 3.715 23.882 3.723 100 1.008 0.829 0.017

25.746# 3.457 25.867 3.441 100 0.884 0.891 0.015

27.206* 3.275 27.092 3.288 101 0.815 0.941 0.014

29.154# 3.061 29.335 3.042 101 0.371 1.007 0.006

41.624* 2.168 41.999 2.150 110 0.364 1.421 0.006

45.678* 1.985 45.810 1.979 103 0.747 1.553 0.012

49.650# 1.835 49.648 1.835 103 0.525 1.679 0.008

Williamson-Hall method was used to determine the structural parameters of the deposited thin films. The Bragg 
peak breadth is a combination of both instrument and sample dependent effects. To take care of these aberrations, it is 
needed to assemble a diffraction pattern from the line broadening of standard material such as silicon to determine the 
instrumental broadening. The instrument corrected broadening βD corresponding to the diffraction peaks is given by [47-
50] as

(8)2 2 2[ ]measure ins entD trumβ β β= −

According to Debye-Scherrer’s formula for determination of crystallite size as given by [51-53] in equation (9),
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While the crystal imperfection and distortion of strain-induced peak broadening is related by 
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Where D is the crystallite size (grain size), λ is the wavelength of the x-ray radiation, θ is the angle of diffraction. 
The extraordinary property of equation (9) is its dependency on the diffraction angle (θ). Depending on different θ 
positions, the separation of size and strain broadening analysis is done using Williamson-Hall method. When equations 
(9), (10) and (11) are combined, we have that
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Where β is the full width half maximum (FWHM), ε is the microstrain. A plot of β against 4sinθ which is regarded 
as Hall-Williamson plot gives the slope of the graph to be equal to the microstrain (ε) and the intercept on the βcosθ axis 

equals to 
0.9 .

D
λ

 Therefore, the crystallite size is given as 
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λ
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Figure 12 shows the Williamson-Hall (W-H) plot of CdSe/ZnSe thin films annealed at 523 K. From the figure, the 
crystallite size of the CdSe/ZnSe superlattice thin film annealed at 523K was found to be 5.546 nm while dislocation 
density and microstrain values obtained were 3.25 × 1016 lines/m2 and 1.13 × 10-2 respectively. The negative slope 
observed in the W-H plot of Figure 12 could be a result of lattice shrinkage due to compressive strain that occurred due 
to annealing which also is evidence of formation of improved crystalline CdSe/ZnSe thin film at 523 K [54-55].
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Figure 12. W-H plot for cadmium selenide/zinc selenide (CdSe/ZnSe) thin films annealed at 523 K

3.5 Morphological properties 
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Figure 13. SEM images of SILAR deposited CdSe/ZnSe superlattice thin films at 300 K, annealed at 423 K and 523 K
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Figure 13 showed SEM images of as-deposited CdSe/ZnSe superlattice thin film and those annealed at 423 K 
and 523 K. SEM image of as-deposited CdSe/ZnSe superlattice thin film revealed the formation of agglomerated tiny 
nanoparticles of different dimensions and sizes. SEM images of CdSe/ZnSe film annealed at 432 K and 523 K revealed 
that the surface of superlattice thin film contained agglomerated mass of nanoparticles of different sizes and shapes.

4. Conclusion
The analysis of the results of the characterizations done on the CdSe/ZnSe superlattice thin films to determine the 

effects of annealing temperatures on their properties showed that the optical properties such as absorbance, reflectance, 
refractive index and extinction coefficient of the films which were low are improved as a result of increase in the 
annealing temperature. The transmittance of the films was found to be high and increased with an increase in wavelength 
but decreases as the annealing temperature increased. The bandgap energy of the films was also found to be wide but 
decreased with an increase in the annealing temperature in the range of 2.5 eV to 1.9 eV. The film thickness of the 
deposited CdSe/ZnSe increased from 136.612 nm to 220.787 nm as the annealing temperature increased. The result of 
elemental composition via EDS analysis showed that Cadmium (Cd), Zinc (Zn), selenium (Se) and other trace elements 
such as carbon (C), oxygen (O), sodium (Na) etc. were present in the sample with a light decrease in atomic percentages 
of cadmium and selenium observed to increase as annealing temperature increased. The XRD results showed that 
diffraction spectra of the films increase in intensity at annealing temperature of 523 K and the result showed that the 
deposited thin films are polycrystalline in nature. The crystal parameters such as crystallite size, dislocation density 
and microstrain of the film at 523 K were found to be 55.46 nm, 3.25 × 1014 l/m2 and 1.13 × 10-2. SEM results showed 
that the CdSe/ZnSe superlattice films formed agglomerated tiny nanoparticles of different dimensions and sizes which 
increased as annealing temperature increased from 432 K to 523 K. These results showed that the deposited superlattice 
thin films of CdSe/ZnSe can be used for many optoelectronic applications like photovoltaic cell, LEDs etc. regarding 
the position of their bandgap energy and other properties. 
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