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Abstract: The term “nanodentistry” was first introduced at the beginning of the 21st century. In recent decades, 
nanotechnology has progressed significantly, creating numerous opportunities for application in various biomedical 
fields. In particular, the use of nanoparticles in endodontics has attracted considerable interest due to their unique 
characteristics. As a result of their nano-size, nanoparticles possess several properties that can improve the treatment of 
endodontic infections, such as increased antibacterial activity, increased reactivity, and the ability to be functionalized 
with other reactive compounds. Materials whose size is less than 100 nm in at least one dimension are referred to as 
nanomaterials. Among nanoparticles can be found grains, fibers, clusters, nano-holes, or their combinations. The main 
feature of nanoparticles is their large surface area per unit mass compared to bulk matter. Due to their large surface 
area, nanoparticles have significantly modified the physical and chemical properties of the material in comparison to 
bulk matter. Nanoparticles with their modified and specific physicochemical properties, such as ultra-small size, large 
surface area/mass ratio, and increased chemical reactivity, have opened new prospects in endodontics. In this study, 
a comprehensive electronic search was conducted using MEDLINE (PubMed), Google Scholar, and open-access 
journals published by Elsevier. The search terms “nanotechnology”, “nanotechnology in dentistry”, and “classification 
of nanoparticles” were used in various combinations. In total, 40 articles were identified, out of which 16 were selected 
for inclusion in the study. These selected articles comprise both research and review articles. This review provides 
insights into the unique characteristics of nanoparticles, including their chemical, physical, and antimicrobial properties; 
limitations; and potential uses. Various studies concerning different methods of using nanoparticles in endodontics have 
been thoroughly studied. Based on previous clinical studies, methods of nanoparticle use in endodontics were evaluated. 
The findings indicate that nanoparticle applications in endodontics have a lot of potential. 
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1. Introduction
Dr. Richard Feynman first explained the concept of nanotechnology in 1959. In 1991, Dr. Sumio Lidjima 

introduced the concept of nanotubes. The term “nanodentistry” was coined by Dr. Freitas Jr. in 2000. He developed 
nanomaterials and nanorobots for the regeneration of dentition and developed “dentifrobots” – robots for cleaning teeth 
[1-3]. In general, materials with a size of less than 100 nm in at least one dimension are considered nanomaterials [4, 5].

Innovative endeavors have since led to nanotechnology being incorporated into a myriad of areas in clinical 
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dentistry, such as direct restorative materials, materials used for dental prostheses, periodontal treatment, guided 
tissue regeneration, modifications of implant surfaces, and endodontics [6-8]. Due to their properties, benefits over 
other conventional materials, and mechanism of action, there has been an enormous increase in the application of 
nanoparticles in various fields of dentistry since their introduction (Figure 1). 
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Figure 1. Classification of dental nanomaterials on the basis of shape and composition [9] (Abbreviations: QAM - quaternary ammonium; QPEI 
- quaternary ammonium polyethylenimine; ACPNP - amorphous calcium phosphate nanoparticles; CNT - carbon nanotubes; HNT - Halloysite 

nanotubes)

2. Materials and methods
Materials whose size is less than 100 nm in at least one dimension are referred to as nanomaterials. Nanoparticles 

possess specific physicochemical properties, such as ultra-small size, a large surface area to mass ratio, and increased 
chemical reactivity. Their properties are considerably different in comparison to bulk matter [4, 5]. 

For the present study, an electronic search was done using MEDLINE (PubMed), Google Scholar, and open-
access journals which are published by Elsevier. For the search words and phrases such as: «nanotechnology», 
«nanotechnology in dentistry», and «classification of nanoparticles» were used in various combinations. 40 articles were 
found, from which 16 were selected. The selected items include research and review articles.

For this review article, a narrative review [10] was performed using a comprehensive literature search. The search 
considered works published from 2010 until November 2022 using the above-mentioned keywords. 

Only relevant literature in English from the electronic search was selected for the present review. The nanoparticles 
had to be used in endodontics. The inclusion criteria are as follows: (i) use of existing commercial materials or their 
modifications in dental praxis; (ii) use of nanoparticles in endodontics; (iii) full-text journal articles written in English; 
(iv) books and book chapters written in English; (v) scientific works published in 2010 and later (only for the discussion 
chapter because there we review these relevant papers); (vi) books and book chapters of highly rated publishers (Wiley, 
Elsevier, and Springer). The exclusion criteria are as follows: (i) case reports (clinical trials); (ii) conference papers; (iii) 
materials published earlier than 2009; (iv) randomized controlled studies; (v) editorials.

(1) The search was carried out in MEDLINE (PubMed) and Google Scholar using the keywords «nanotechnology», 
«nanotechnology in dentistry», and «classification of nanoparticles» in various combinations. In total, 40 
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records were found.
(2) The first and third co-authors analyzed 40 records for compliance with the inclusion and exclusion criteria. An 

additional 15 records were identified from the reviewer’s suggestions. In total, 24 records were deleted, i.e., 31 
records remained.

(3) All selected records were distributed among all authors for reading the full-text articles and preparation of the 
manuscript. The procedure is shown in Figure 2 of the PRISMA flowchart.
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of inclusion/exclusion criteria

3. Results
Biofilms are highly organized, surface-adjacent structures of microcolonies [11]. The main component of 

biofilms is an exopolymeric matrix consisting of polysaccharides, proteins, enzymes, and bacterial metabolites [12, 
13]. Exopolysaccharides are synthesized both intracellularly and extracellularly and perform skeletal functions [14]. 
The extracellular matrix of the biofilm is secreted by bacteria and consists of metabolic polymers that firmly adhere 
to surfaces. Biofilms develop in stages: initial attachment of microbes to the surface or bacterial cell, formation of 
microcolonies, maturation, and finally, expansion of the biofilm [15, 16].

Persistent microflora in the lumen of numerous dentinal tubules is practically not amenable to medicinal and 
instrumental treatment of root canals. Chemical irrigation solutions, intracanal preparations, and topical antibiotics 
have been used for years to eliminate biofilms. However, over time, microorganisms can develop resistance to these 
antimicrobial agents. Therefore, research has focused on new anti-biofilm strategies [17, 18]. The diameter of dentin 
tubules is only 200-300 nm, which prevents the penetration of even the strongest antiseptics. The inclusion of metal 
nanoparticles in antiseptics for root canals can help cope with resistant microflora (Enterococcus faecalis) after one 
week [19, 20].

In endodontic treatment, nanotechnology plays an important role in the development of advanced endodontic 
materials. The properties of endodontic materials can be improved through the use of nanotechnology by incorporating 
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antibacterial nanoparticles, which can prevent the recurrence of infection and the ineffectiveness of root canal treatment 
[9, 21].

These nanoparticles can be incorporated into sealers, obturation material, intracanal medications, and irrigation 
solutions to achieve desired results [8] (Figures 3 and 4).
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Figure 3. The applications of nanoparticles in endodontics [22]
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Figure 4. Variety of nanoparticles used in endodontology

3.1 Modern methods of bacterial disinfection

Modern cleaning and shaping of root canals are based on the application of chemical mechanical processing to 
achieve optimal bacterial disinfection. The purpose of root canal irrigation is chemical dissolution or destruction and 
mechanical removal of the pulp tissue, debris of dentin and smear layer, microorganisms and their byproducts from the 
wall of the root canal, and debridement of the entire root canal system.

3.1.1 Endodontic irrigation

One of the most important elements of root canal treatment is their disinfection by irrigation.
Irrigants facilitate the removal of microorganisms, tissue remnants, and dentinal debris from the root canal; prevent 

the compaction of hard and soft tissues in the area of the apical hole and the intrusion of infected remnants into the 
periapical area; dissolve organic and inorganic tissues in the root canal. Irrigation makes it possible to remove infected 
tissues that are inaccessible to mechanical debridement alone. Theoretically, the irrigation liquid is able to reach all 
areas of the canals, removing pathological tissues from them without damaging the healthy tissues of the root canal [23].

During the preparation of hard tooth tissues with manual or rotary tools, a smear layer is formed on the dentin 
surface, which is characterized by a high content of organic components in the form of pulp tissue remnants, 
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odontoblasts, and weakly mineralized pre-dentine. To remove the smear layer from the inner walls of the root canal, 
liquids that are effective for both organic and mineral component removal are required. Thus, effective chemo-
mechanical treatment is important to eliminate root canal infection [7, 24].

The most commonly used irrigants are chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA), and sodium 
hypochlorite (NaOCl) (Table 1).

Table 1. Most widely used endodontic irrigants and their properties

Conventional irrigants Properties Drawbacks

NaOCl 0.5% to 5.25%. Tissue dissolving and antimicrobial 
properties

Breakdown and weakening of the organic dentin matrix.
Damage to the periapical tissues.

CHX 2% Antibacterial properties and 
substantivity

Inability to degrade necrotic tissue. Reduced efficacy against 
Gram-negative microbes.

EDTA 17% Chelating agent Excessive use can lead to dentin demineralization and 
erosion.

It is necessary to influence the organic substance of dentine of the root canal with NaOCl in the form of 0.5-5.25% 
solutions. To influence the inorganic substance in the root canal, drugs based on EDTA-ethylenediaminetetraacetate 
15-17% are used. The mechanism of action of CHX is associated with the adsorption of the solution on the wall of 
microorganisms, which causes the leakage of their intracellular components. It is bacteriostatic in low concentrations, 
and bactericidal in high concentrations.

Although the aforementioned irrigants have proven to be effective antimicrobial agents, they do not guarantee 
complete disinfection of the root canal space, and none of the existing technologies guarantee complete removal of 
endodontic biofilms.

The introduction of antimicrobial nanoparticles is considered a new strategy for increasing the effectiveness of 
root canal irrigants. Formulations based on nanoparticles have been found to have better penetration, and a slow and 
controlled release of active ingredients at target sites [25, 26]. The antimicrobial properties of metal nanoparticles are 
well known and are of great importance in strategies designed to eradicate chronic infections [27]. The most popular 
metal nanoparticles are silver nanoparticles.

3.1.2 Photodynamic therapy

Biofilm disruption and disinfection of root canals are the most critical steps during the treatment of an infected 
root canal system, which are essential to avoid the persistence of microbial infection and achieve endodontic success 
[28]. Total asepsis of the root canal is not possible to achieve despite effective current instrumental techniques and 
modern antiseptics. Antimicrobial photodynamic therapy (aPDT) has emerged and provided excellent experimental 
results, anticipating a new era in endodontic disinfection [29]. The chlorophyll derivative Zn(II)e6Me showed adequate 
antimicrobial efficacy, performing better in mixed biofilm removal [30]. 

PDT is an adjunctive, conservative, non-selective approach to eliminating bacteria. The technique of a PDT is used 
to improve root canal disinfection without inducing bacterial resistance [31]. The PDT principle is not only effective 
against bacteria but also against other microorganisms, including viruses, fungi, and protozoa [32-34]. PDT uses a 
photosensitizer and light of a specific wavelength, e.g., toluidine blue at 600 nm wavelength. Effective oral biofilm 
destruction with methylene blue dye (photosensitizer) encapsulated within poly(D, L-lactide-co-glycolide) (PLGA) 
nanoparticles (≈ 150 nm to 200 nm in diameter) [35].

3.2 Nanomaterials in endodontic instruments

The introduction of nickel-titanium (NiTi) alloys and the subsequent automation of mechanical preparation were 
the first steps toward a new era in endodontics. Endodontic files are used to make the instrumentation of the root canal 
in the endodontic procedure. NiTi file systems have been introduced to minimize the chance of endodontic procedure 
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errors. Despite high flexibility and increased torsional fracture resistance when compared with conventional stainless-
steel instruments, NiTi files are very subject to cycle fatigue and risk fractures that occur unexpectedly and frequently 
without being preceded by visible defects resulting from permanent deformation [36]. 

NiTi alloy was originally developed for the U.S. space program at the Naval Ordnance Laboratory, in 1963, and 
was given the generic name “Nitinol” [37]. In dentistry, it was first used in 1971 by Andreasen and Hilleman, in the 
manufacture of orthodontic wires, due to its low modulus of elasticity, shape-memory effect, and super-flexibility. 
Specifically in endodontics, Civjan et al. [38] were the first to conceptualize the fabrication of endodontic instruments 
from the NiTi alloy, in 1975. Later, in 1988, Walia et al. [39] introduced the first handheld NiTi endodontic instruments, 
made by machining orthodontic wire. Thereafter, technological advances in the production of NiTi instruments allowed 
them to be manufactured by machining processes with significant changes in the configuration of the active part, 
variations in the helical angle and cut angle, and different increases in taper within the same instrument, no longer 
following the ISO standards published in 1958 for manual instruments [40].

From a future perspective, coating the files with nanoparticles will improve their resistance to cyclical fatigue. 
Also improved the resistance to corrosion by the endodontic irrigants. Cobalt coatings of the NiTi file with impregnated 
fullerene-like WS2 nanoparticles significantly improved the fatigue resistance and breakage time of coated files were 
observed stemming from reduced friction between the file and the surrounding tissue [41].

3.3 Root canal sealers

Sealer forms an integral part of obturation. They hold gutta percha within the root canal space. Ideal properties of 
a sealer include: ease of handling, non-toxicity, biocompatibility, absence of shrinkage upon setting, effective working 
time, hydrophilic properties, antibacterial property, ease of retreatment, etc.

Apart from antibacterial efficacy, nanoparticle-based modifications are used to enhance other physicochemical 
properties of endodontic sealers, including bioactivity and radiopacity. A study by Al-Bakhsh et al. [42] found that the 
inclusion of bioactive glass and hydroxyapatite nanoparticles enhanced the bioactivity of an epoxy resin-based sealer.

Calcium hydroxide paste is the most commonly used material. It initiates the release of hydroxyl ions that increase 
the pH within the root canal, distressing the DNA, cytoplasmic membranes, and enzymes of microorganisms. Silver 
nanoparticles (the size of 20 nm) can be mixed with calcium hydroxide, which showed increased antibacterial action 
when calcium hydroxide was used alone or in combination with CHX [43].

Zinc oxide is mainly used for its antimicrobial properties. The process takes place through the electrostatic 
interaction of nanoparticles with the bacterial cell membrane (nanoparticles are charged positively, and the membrane is 
negatively charged). As a consequence of the accumulation of nanoparticles, the permeability through the membrane is 
inhibited, which is a further cause of bacterial cell death [44].

A bioceramic-based nanomaterial (Endo Sequence BC sealer) used as a sealer that is composed of calcium 
phosphate, calcium hydroxide, calcium silicates, zirconia, and a thickening agent was developed recently. Nanoparticles 
have improved physical properties. The nanocomposite structure of hydroxyapatite and calcium silicate forms during 
the hydration reaction in the root canal. This hydration reaction and setting time are affected by the availability of water, 
and setting time may be prolonged in overly dried canals. Nanosized particles facilitate the delivery of material from 
0.012 mm fine needles and adapt to irregular dentin surfaces, providing excellent seal and dimensional stability [45].

This type of hydraulic calcium silicate cement, bioceramic, is associated with color change in the medium/long 
term in contact with blood [46]. It was also important to know how far one could fill the canal with these techniques 
without interfering with discoloration or minimizing this impact. This impact agent (oxide bismuth) has an effect on 
discoloration [47].

Other drawbacks of mineral trioxide aggregate (MTA) cement were lower values of shear bond strength and the 
fracture pattern, which were all cohesive in bioceramic. Palma et al. [48] suggest that all tested biomaterials (Biodentine 
and TotalFill BC) present suitable alternatives that allow performing restorative procedures immediately after pulp 
capping biomaterial placement (3 or 12 min), depending on the bioactive cement. 

Hydraulic calcium silicate-based cement (HCSC) has gained increasing clinical relevance, enabling a more 
conservative approach based on pulp preservation and regeneration. To overcome some of MTA’s conventional 
limitations, new cement has been developed; Xavier et al. [49] tested how the additional hydrophobic bonding layer 
and restoration time affected the bond performance and ultra-morphological interface between composite adhesive 
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restoration and HCSC.

3.4 Pulp repair and regeneration

Regenerative endodontics is referred to as a biologically based procedure intended to physiologically replace 
damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex [50].

Regeneration of dental pulp is a dream for dental clinicians all over the world and will definitely be a game changer 
in clinical practice. With advancements in technology, it has become a fruitful reality. Theoretically, it is possible to 
regrow dental pulp inside a pulpless tooth by using growth factors, scaffolds, and stem cells [51].

The use of nanoscale scaffold materials for tissue regeneration has already been established. Nanoscaffolds 
comprising nanofibers of biodegradable collagen type I or fibronectin can be used for pulp regeneration. Self-assembling 
polypeptide hydrogels have been used for pulp tissue regeneration [52]. Poly(l-lactic acid) (PLLA) is a common 
synthetic polymer that can be applied in nanoform and has the ability to participate in tissue engineering. 

To address this challenge of pulp regeneration, Li et al. [53] designed and synthesized a unique hierarchical growth 
factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) 
binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the 
nanofibers of an injectable PLLA microsphere. This hierarchical microsphere system not only protects the VEGF from 
denaturation and degradation but also provides excellent control over its sustained release. In addition, the nanofibrous 
PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, 
efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation.

Regenerative endodontic procedures (REPs) demonstrate excellent success rates for the resolution of periapical 
pathology and increase the survival of the immature tooth. Moreover, recent histologic findings from animal studies [54] 
and human clinical cases [55] give information about the nature of the newly formed tissues after REPs. 

Thus, based on the various research conducted over the years, it is worth saying that nanotechnology has gained 
significant development in the field of regenerative endodontics. The regeneration of pulp in a pulp-less tooth will soon 
be a reality.

3.4.1 Organic nanoparticles
3.4.1.1 Graphene

Graphene, an allotrope of carbon, is the thinnest material and forms an even crystal lattice without any structural 
dislocations. This nanoparticle is used for diagnosis and detection of disease and the formation of antibacterial surfaces 
[56].

Graphene nanoplatelet, a derivative of graphene, also showed antimicrobial properties against various 
microorganisms, especially Streptococcus mutans, in a study performed by Rago et al. [57]. The SEM (scanning 
electron microscopy) images showed that a strong mechanical bond exists between the graphene nanoplatelet and cells, 
which involves shrinking and trapping of cells, ultimately leading to the death of these microorganisms.

3.4.1.2 Chitosan nanoparticles (Cs-NPs)

Cs-NPs are one of the commonly investigated polymeric nanoparticles in endodontics. Chitosan is a natural 
polysaccharide that is obtained by deacetylation of chitin, one of the most abundant polysaccharides in nature that forms 
most of the external skeleton of arthropods such as crabs and shrimps [58-61].

The mechanism of action of Cs-NPs is based on the principle of electrostatic interaction leading to cell membrane 
disruption. This results in increased permeability of the cell wall, eventually causing cell death and microleakage of its 
intracellular components [62].

Cs-NPs have shown enhanced antibiofilm efficacy and have the potential to disable bacterial endotoxins. These 
nanoparticles cause enhanced bacterial degradation, as demonstrated by the organized release of singlet oxygen species. 
They are suggested for usage as a finishing rinse in the irrigation of root canals as they are non-toxic to eukaryotic cells 
[56, 63, 64].
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3.4.1.3 PLGA

PLGA is a biodegradable polymer used in a wide range of medical applications. In particular, PLGA materials 
are also being developed for the dental industry in the form of scaffolds, biofilms, membranes, microparticles, or 
nanoparticles [65]. Biocompatibility, biodegradability, flexibility, and minimal side effects are the main advantages 
of using this polymer for biomedical purposes. PLGA microparticles were successfully studied in a wide range 
of dental applications, such as endodontic therapy [66]. In endodontics, PLGA and zein microspheres are able to 
deliver significant amounts of amoxicillin into the root canal and exceed concentration levels required for appropriate 
endodontic disinfection. Amoxicillin was chosen because it is effective against E. faecalis. This microorganism is 
responsible for endodontic failure and retreatment cases. E. faecalis is the most resistant to root canal debridement and 
intracanal dressings [67].

3.4.2 Non-organic nanoparticles
3.4.2.1 Bioactive glass

In 1960, Piotrowski et al. [68] developed bioactive glass, which consisted of strictly defined proportions of sodium 
oxide, calcium oxide, phosphorus pentoxide, and silicon dioxide. SiO2, Na2O, and P2O5 in different concentrations form 
the main components of bioactive glass. Their size ranges from 20 to 60 nm [69].

Bioactive glass in micro- and nanoforms is used for the disinfection of root canals. Bioactive glass has antibacterial 
properties. This is possible when several factors work together [70]. These include high pH, Ca/P deposition, and 
osmotic effects.

An increase in pH occurs when bioglass dissolves in water and thus releases ions. In turn, deposited Ca/P ions 
initiate mineralization on the surface of bacteria, and an increase in osmotic pressure above 1% inhibits numerous 
bacteria [71].

3.4.2.2 Mesoporous calcium silicate

These are nanoparticles with sizes ranging from 80 to 100 nm and a high specific surface area and pore volume 
ratio. These nanoparticles find their use in the filling of the apical third of the root canals due to their property of being 
highly viscous in nature [72]. Its other advantages in endodontics include drug delivery, antibacterial efficiencies, 
injectability, apatite mineralization, and osteostimulation [73].

3.4.2.3 Hydroxyapatite nanoparticles

Hydroxyapatite (HA) is one of the most studied biomaterials in the medical field for its proven biocompatibility 
and for being the main constituent of the mineral parts of bone and teeth. Nano-hydroxyapatite presents crystals 
ranging in size between 50 and 1000 nm. HA (Ca5(PO4)3OH) possesses superior qualities such as high biocompatibility, 
properties similar to human hard tissues, antibacterial properties, and bioactivity.

Their main function is to integrate into the dentinal tubules and seal their opening, preventing the exposure 
of nerves to external stimuli. Also, they have an important role in decreasing dentin hypersensitivity. HA is very 
biocompatible, is capable of reducing local or systemic inflammatory reactions, and can be used as an agent in periapical 
healing [74]. 

3.4.3 Metal nanoparticles
3.4.3.1 Silver nanoparticles (AgNPs)

The biological activity of AgNPs, like other products containing silver, occurs through the gradual release of silver 
as a consequence of redox reactions in the presence of water [75]. One of the most important mechanisms of action of 
AgNP is represented by the induction of reactive oxygen species (ROS) production, and hydroxyl radicals are the main 
species responsible for oxidative damage [76].

AgNPs can easily penetrate the bacterial cell membrane due to their larger surface area and small sizes causing 
rapid bactericidal action. It is biocompatible, shows low bacterial resistance, low toxicity, and longstanding antibacterial 



Volume 4 Issue 2|2023| 113 Nanoarchitectonics

activity. Biologically produced AgNPs have shown effective antibacterial properties against E. faecalis [77]. When used 
as an irrigating solution, poly(vinyl alcohol) (PVA)-coated AgNPs were efficient against Pseudomonas aeruginosa, 
Candida albicans, and E. faecalis [78]. Irrigating with AgNPs solutions may influence the physical and structural 
properties of root dentine. Using an AgNP-based irrigant as a final rinse almost doubled the fracture resistance of 
endodontic-treated teeth compared to when only NaOCl was used [79-81].

3.4.3.2 Silica nanoparticles

Silica nanoparticles have a positive impact in the field of dentistry, more so in conservative dentistry than in 
Endodontics. These nanoparticles have shown excellent biocompatibility and a large surface area with low levels of 
toxicity and density. They are widely used as dental fillers in various restorative materials and also as a polishing agent 
due to their ability to lower roughness of the polished surface [3].

3.4.4 Metal oxide nanoparticles
3.4.4.1 Iron compound (FeOx)

Iron compound (FeOx) nanoparticles have an important role in biology and the medicinal field. Magnetite and 
Maghemite, the two common forms of iron oxide nanoparticles, are most popular in biomedical science due to their 
biocompatibility and non-toxic properties to humans. They possess superparamagnetic properties at certain sizes. This 
allows them to have properties that make them suitable contrast agents, drug delivery vehicles, and thermal-based 
therapeutics [82, 83].

3.4.4.2 Magnesium halogen-containing nanoparticles

Magnesium-containing nanoparticles were suggested for use as antimicrobial agents against endodontic pathogens 
due to their known antibacterial properties against Gram-positive and Gram-negative bacteria, spores, and viruses [84]. 
Magnesium-containing nanoparticles are either magnesium-oxide nanoparticles or magnesium-halogen-containing 
nanoparticles such as chlorine, bromine, and fluorine [85, 86].

The main mechanism is penetration inside the bacterial cell, causing a disturbance in the membrane potential. 
The lipid peroxidation and DNA binding effects of the nanoparticles were facilitated by penetration, causing more 
destruction of the bacterial cell [87].

3.4.4.3 Zinc oxide nanoparticles (ZnONP)

Zinc oxide nanoparticles (ZnONPs) are used because of their bactericidal properties and a mechanism of action 
similar to that of AgNPs. A ZnONPs-based irrigant was found to eliminate planktonic E. faecalis and disrupt the biofilm 
matrix while retaining its antibacterial activity after 90 days of aging [22, 88].

Zinc oxide nanoparticles showed high antibacterial effectiveness, destroying microbial cells in a higher pH 
environment. The antibacterial mechanism of zinc oxide nanoparticles is similar to that of other types of nanoparticles, 
causing increased permeability of the cell wall membrane, a release of cytoplasmic content, and cell death [89-
92]. However, its antibacterial efficacy was less pronounced against biofilm bacteria compared to their planktonic 
equivalents.

3.4.4.4 Magnesium oxide and calcium oxide (MgO and CaO) nanoparticles

Magnesium oxide nanoparticles (MgONPs) have proven multiple antimicrobial effects, and because of this, they 
are used in endodontics. MgO and CaO nanoparticles were proven to be efficient against both Gram-positive and 
Gram-negative microorganisms. Both MgO nanoparticles at a concentration of 5 mg/L and chitosan nanoparticles 
demonstrated long-lasting efficacy in the eradication of E. faecalis [93].

Metal oxides like zinc oxide and magnesium oxide have great antibacterial properties in various forms. The 
antibacterial and mechanical properties of the materials in which MgONPs were incorporated were tested, showing a 
significant reduction in the growth of Staphylococcus aureus [74, 94].
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3.4.4.5 Cuprum oxide nanoparticles (CuONPs)

These nanoparticles are effective against Gram-positive and Gram-negative bacteria as they cross the bacterial cell 
membrane and damage the vital enzymes of the bacteria. CuONPs penetrate the bacterial cell membrane and are highly 
effective against Gram-positive and Gram-negative bacteria. They also possess certain antifungal properties. However, 
their application in the field of endodontics is limited, and further studies are required to evaluate their efficacy [3, 95].

Antibiotic-mediated synthesis of gold nanoparticles with potent antimicrobial activity researched by Rai et al. 
[96] suggest that the combined action of cefaclor, which inhibits the synthesis of the peptidoglycan layer, and gold 
nanoparticles, which cause “holes” in bacterial cell walls, results in the leakage of cell contents and eventually cell death 
[97].

Despite some limitations, such as low residence time in the blood circulatory system, susceptibility to proteases, 
and an alkaline wound environment, antimicrobial peptides (AMPs) are considered alternatives to antibiotics due to 
the increasing number of multidrug-resistant bacteria [98]. AMPs, such as LL37 peptides, may be immobilized on the 
surface of medical devices, such as dental implants, to render them antimicrobial and angiogenic properties (conjugated 
to gold nanoparticles) [99].

3.4.4.6 Titanium dioxide (TiO2) nanoparticles

The TiO2 nanoparticles are safe enough to be used in various areas of medicine and dentistry as a result of their 
biocompatibility, biosafety, and non-allergic reactions with human tissues. TiO2 nanoparticles have a great range of 
uses in medical and dental applications (bone grafting, dental implants, etc.) and have been explored in recent years as 
antimicrobial agents [100]. 

3.4.5 Possible perils of endodontic nanotechnology

Nanoparticle-based endodontic therapies are not without disadvantages, such as the potential for cytotoxic effects 
on periapical and pulpal tissues.

Nanoparticles may enter into the human body in diverse ways, including the lungs, skin, gastrointestinal tract, and 
systemic administration. Given that nanoparticles have similar dimensions to biological molecules, they are readily 
absorbed by various organs and tissues and can accumulate in the lungs, liver, and reticuloendothelial system [101-103].

The environmental concerns associated with the use of nanoparticles are present as well. Nanoparticles may act 
as pollutants and accumulate in the environment, and given that, the toxic effects are often concentration-dependent. 
Bioaccumulation could result in subsequent systemic toxicity for exposed living organisms [104].

4. Conclusions
A large number of nanoparticle-containing materials are available on the market today. They provide multiple 

choices for their use in the medical field. The impact of nanoparticles in the field of endodontics is quickly advancing. 
Their applications in the diagnosis and treatment of infections and in regenerative procedures are increasing. Their 
unique properties, like larger surface areas and better reactivity, result in better antibacterial actions in contrast to their 
bulk counterparts. The era of nanoendodontics paves the way for the wider use of nanoparticles in dentistry in the 
future. 

In this paper, we considered the pros and cons of nanoparticles with respect to endodontics. The main advantage of 
nanoparticles in endodontics is their application to improve existing conventional materials due to their higher reactivity 
with host tissues.

However, nanoparticles also have some drawbacks. First of all, they can be toxic for humans as well as for nature. 
It should be noted that this side is not studied enough. Another drawback is their synthesis. Nanoparticles must be safe 
for humans, environmentally friendly, and cost-effective. It is quite challenging to synthesize nanoparticles with the 
properties listed above.

It is obvious that additional clinical investigations are required to further enhance their properties and applications 
as well as study the possible perils of nanoparticles. We expect considerable growth in papers in this field in the near 
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future. For instance, in [5], there is a forecast of future papers related to studies of nanoparticles in dentistry. According 
to the forecast made in [5], the 95% confidence interval for the number of papers published in 2022-2026 lies within the 
range of 256-360 papers. Thus, we can expect at least a twofold growth in papers in this field. We hope future studies 
will study the possible negative effects of nanoparticles on humans and nature because this field is underrepresented in 
scientific studies.
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