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Abstract: All-solid-state batteries (ASSBs) have attracted much attention in recent years，due to their high energy density, 
excellent cycling performance, and superior safety property. As the key factor of all-solid-state batteries, solid electrolyte 
determines the performance of the batteries. Garnet-typed cubic-Li7La3Zr2O12(LLZO) has been reported as the most 
promising solid electrolyte on the way to ASSBs. Thin film electrolyte could contribute to a higher energy density and 
a lower resistance in a battery. This short review exhibits the latest efforts on LLZO thin film and discusses the different 
preparation methods, together with their effects on characteristics and electrochemical performances of the solid electrolyte 
film.
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1. Introduction
After being commercialized by Sony in 1991, Lithium-ion batteries (LIBs) have gradually become one of the popular 

energy storage devices, and have widespread applications in electronic devices, electric vehicles and smart grid systems.
[1-3] However, the conventional LIBs based on flammable organic liquid electrolytes, faced the inherent safety issues of 
leakage, fire, and explosion, especially in the development of large-scale LIBs [4,5].

Compared with the traditional lithium ion batteries, all-solid-state batteries (ASSBs) have attracted much attention 
in recent years，duo to the high energy density，excellent cycling performance and serious safety. The replacement of 
flammable organic liquid electrolytes by inorganic materials in ASSB limited the safety issues. [6] In addition, different 
from the liquid electrolytes, the solid electrolytes have a wider stable electrochemical window and the inhibition of lithium 
dendrite penetration. Lithium metal anode and high voltage cathode are befitting electrode materials in ASSB, which result 
in a higher energy density of lithium battery [7-10].

Solid electrolyte is the key factor of all-solid-state batteries, which determines the performance of the batteries. 
Among the reported solid electrolytes, sulfide-based electrolytes show the highest ionic conductivity. According to the 
reports, the value of sulfide-based electrolytes ionic conductivity was as high as 10-2 S cm-1, some results even to 10-1 S cm-

1, the values were comparable to or higher than traditional liquid electrolytes [11,12]. However, the sulfide-based electrolytes 
are not stable in the air condition. On the contrary, the oxide solid electrolytes showed more stabilities than sulfide-based 
electrolytes [2]. In the numerous oxide solid electrolyte, garnet-typed cubic Li7La3Zr2O12 (LLZO) has a relatively higher 
ionic conductivity, wider electrochemical window and more excellent stability against lithium metal. It is reported as the 
most promising solid electrolyte among the oxide solid electrolyte [1,10,13]. 

However, the development of solid electrolyte is restricted by some challenges, such as its low ionic conductivity and 
large interfacial resistance. Lots of works focused on these issues have been reported to improve the above restrictions, 
such as the improvement of ionic conductivity by elements doping [14-16], the enhancement of  density of LLZO pellet by 
improving the sintering technology [17-19], the alleviation of interface issues by changing the contact [20-22] or adding a buffer 
layer [23,24]. 

Elements doping is a significant way to improve ionic conductivity. According to the difference of dopant site, there 
are three doping sites in the material of LLZO [25]. In mass of element doping works, Al3+/Ga3+ doped [26-28] on Li site, W6+/
Ta5+/Y3+ resided Zr site [29-32] and some multiple element doping showed obvious efforts. For example, Li6.4La3Zr1.4Ta0.6O12 

[33] 
and Li6.20Ga0.3La2.95Rb0.05Zr2O12 

[14] showed the highest ionic conductivity, over 10-3 S cm-1 at room temperature.
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Another method to increase the ionic conductivity value is increasing the density of LLZO pellet, which involving 
the solid state sintering technology [34]. Rangasamy et al. [35] used the hot press technique to sinter LLZO pellet. The 
Li6.24La3Zr2Al0.24O11.98 pellet was heated at 1000 °C under 40 MPa pressure for 1 h and showed an ionic conductivity of 
4×10−4 S cm-1 with a relative density of 98%. Later, the hot isostatic pressing was introduced in sintering LLZO. With this 
method, the density of the Al-doped LLZO pellet was increased from 91.5% to 99.1%, which contributed a high ionic 
conductivity of 9.9×10−4 S cm-1 at 25 °C [19]. Moreover, fast microwave-assisted sintering [36] and spark plasma sintering [37] 
were discovered in the preparation of LLZO bulk materials. The Ta-doped LLZO pellet, obtained by spark plasma sintering 
technique, showed the ionic conductivity of 1.35×10−3 S cm-1 at 25 °C and 1.23×10−2 S cm-1 at 80 °C [37]. In addition, many 
fillers materials, such as Li2O [38], Li3PO4 

[39], Li4SiO4 
[40], LiBO3 

[41], LiF [42], were added into the LLZO powder during the 
sintering process, which method decreased the grain-boundary resistance successfully.

Interface issues, the key factor of ASSBs, limited the applications of solid state electrolyte [43]. The causes of interface 
issues in ASSBs could be divided into different parts. First, compared with the liquid-solid contact in conventional lithium 
battery, ASSBs had less active sites due to the solid-solid contact between electrode and electrolyte [44-46]. Second, the space 
charge layer caused by the potential difference was existing in the interface [47-49]. Third, the volume expansion of electrode 
materials made the contact worse and worse during the charging-discharging cycles [50]. Last, the elements diffusion rested 
in the interface by reason of the concentration difference [51]. Kim et al. [52] investigated the interfacial issue of LiCoO2/
LLZO/Li by the TEM characterization of the interface. The result showed the formation of an intermediate caused by the 
vary elements diffusion, which contributed to the high interfacial resistance and poor lithium insertion-extraction behavior. 
Kato et al. [53] modified the interface by the deposition of a thin Nb layer. A low resistivity-amorphous layer of Li-Nb-O 
formed in the interface, which avoided the influences of elements diffusion and made a lower space charge layer. Luo et 
al. [54] improved the contact issue between LLZO and lithium metal by coating an ultrathin amorphous Si layer. During the 
cycling, the layer transformed to a super-lithiophilicity, which contributed to a lower interface resistance.  

 Owning to the progresses above, preliminary results of the LLZO applications in ASSB have been achieved. Ohta 
et al. [55] reported an application of Nb-doped LLZO pellet in the Li/LLZONb/LCO solid state battery. In the work, the 
excellent cycling performance of the cell was attributed to a well contact interface. They deposited cathode LCO on the 
LLZONb pellet by the method of pulsed laser deposition (PLD), which contributed to the well contact between the solid 
electrolyte layer and the cathode layer. Later, for element doping and high relative density of Ta-doped LLZO, Guo et al. [33] 
showed a high ionic conductivity of LLZTO pellet, as high as 1.6 × 10-3 S cm-1, which was the key factor of the all-solid-
state battery performance at high temperature. Li et al. [42] introduced LiF to Li6.5La3Zr1.5Ta0.5O12 (LLZTO) to increase the 
stability and the electrolyte showed a small interfacial resistance with Li anode. The LLZTO pellet was applied both in the 
LFPO/Li and Li-S battery. Recently, Kun (Kelvin) Fu et al. [56] prepared the garnet electrolyte of Li7La2.75Ca0.25Zr1.75Nb0.25O12 

and modified the electrolyte/metallic Li interface with an ultrathin Al layer. By this method, a good Li wetting lied in the 
interface and got more stable performances in Li-ion, Li-sulfur, and Li-oxygen batteries.

After the first report of LLZO [57], most of the researches were focused on the LLZO bulk ceramic electrolyte, only a 
few work have been made to the LLZO thin film. Compared to the bulk ceramic electrolyte, thin film has one advantage. 
The lithium diffusion time will be decreased a lot. The lithium diffusion time t and the thickness of electrolyte layer L are 
proportional to the square, (D, diffusion constant). When L is reduced, it is more largely reduced [9]. 

According to the previous reports, LLZO has been applied in thin film as solid electrolyte. This review will summarize 
the preparation methods, characteristics and electrochemical performances of LLZO thin film. Section 2 focused on 
different methods of deposition. The method and as-prepared thin film of sol-gel method covered in Section 3. Section 4 
showed an LLZO film and its applications by focused ion beam milling. The last Section discussed the LLZO composite 
electrolyte thin film and the characteristics of ASSBs. 

2. Methods of deposition
Deposition methods were the intuitionistic way of preparing thin films. This section discusses the five kinds of 

deposition method: Pulsed laser deposition (PLD), Radio-frequency (RF) magnetron sputtering, Chemical vapor deposition 
(CVD), Atomic layer deposition (ALD) and Aerosol deposition (AD) method.    
2.1 Pulsed laser deposition (PLD)

Pulsed laser deposition (PLD) was firstly carried out as a method to prepare LLZO films in the year of 2012 [59,60]. 
The prepared amorphous LLZO had a large optical band gap of 5.13 eV, and the value was reduced to 3.64 eV after the 
treatment of annealing [59]. With a Laser-annealing treatment, the ionic conductivity was increased from 3.35×10−7 S cm-1 
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to 7.36×10−7 S cm-1 [60]. Rawlence et al. [61] prepared LLZO film on the MgO substrate by PLD technique (Fig. 1c), with a 
thickness of 380 nm. The film showed an ionic conductivity of 1.2×10−3 S cm-1 at 325 °C. Reinacher et al. [62] reported that 
garnet-type Li6BaLa2Ta2O12 thin films were prepared on MgO (100) single crystals by the way of pulsed laser deposition. 

The ionic conductivity of the film was 1.7×10−6 S cm-1 at room temperature, which was a little lower than the bulk value 

Figure 1. (a) Schematic of the deposition process (b) Experimental set-up for the conductivity measurements [58] 

of 5.0×10−6 S cm-1. PLD technique was also successfully used in deposition of epitaxial LLZO film [63]
. On the Gd3Ga5O12 

(GGG) substrate, LLZO (001) and LLZO (111) were obtained. At room temperature, the ionic conductivities in the grains 
of the (001) and (111) films were 2.5 × 10−6 S cm-1and 1.0 × 10−5 S cm-1. On the basis work [64] of preparing the LLZO 
film on AAO (Fig. 2d & 2e), Park et al. [65] studied the effects of substrate temperatures and impurities on electrochemical 
properties of the film, which was prepared by PLD method. In the work, the film was deposited both on Si and AAO 
substrate and the SEM of the section in figure 2a and figure 2b. The result showed that the film was in a mixture of cubic 
and tetragonal phases of LLZO in the condition of deposition temperature above 600 °C. Figure 2b also revealed the upper 
region of the film was rich in aluminum and oxygen by an EDS scan along the dotted line. In the EDS analysis, the counts 
of aluminum element in this region was comparable to the AAO substrate. 

The film, deposited at 600 °C, exhibited the highest room temperature conductivity of 1.61 × 10−6 S cm-1. Saccoccio et 
al. [58] studied the low temperature PLD method in fabricating pure cubic LLZO film on MgO (100) substrates. According 
to the work, having a range deposition temperature from 50 °C to 700 °C, the ionic conductivities of the films were not 
significantly influenced.
2.2 Radio Frequency (RF) magnetron sputtering

Radio-frequency (RF) magnetron sputtering is also a common technique for preparing films. Kalita et al. [69] firstly 
deposited amorphous lithium-lanthanum-zirconium-oxide (Li-La-Zr-O) film by the method of RF magnetron sputtering. 
The thickness of films could be changed by varying the RF power. The thickness, which could be seen in Figure 3a-
3c, were 561 nm at 40 W, 861 nm at 60 W and 941 nm at 80 W. The film deposited at 40 W showed the highest ionic 
conductivity of 4×10−7 S cm-1, compared with the 60 W and 80 W samples which showed the ionic conductivity values of 
2×10−7 S cm-1 and 0.8×10−7 S cm-1 respectively. 

Compared with the amorphous lithium-lanthanum-zirconium-oxide (Li-La-Zr-O) film work [69], Lobe et al. [70] 
deposited Ta- and Al-substituted LLZO thin films on stainless steel substrates by radio-frequency (RF) magnetron 
sputtering at high temperature. According to the result of depositions at different temperatures, LLZO formation started at 
around 650 °C and single phase cubic thin films were obtained at 700 °C. Figure 3d and Figure 3e showed the films at 
the deposition temperature of 700 °C and 800 °C. The film showed the ionic conductivity values of 1.2×10−4 S cm-1 (in-plane, 
Fig 2f) and 2.0×10−9 S cm-1 (perpendicular to the plane).
2.3 Chemical vapor deposition (CVD)

This part mainly covers two components: metal organic chemical vapor deposition (MOCVD) and laser assisted 
chemical vapor deposition (LACVD).

As a technique for the preparation of thin films, MOCVD technique shows advantages on high deposition rates and 
moderate vacuum conditions. In addition, the morphology and phase formation can be controlled during the process of 
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preparation of films by the MOCVD method. Equipped with the experience of the LCO film, Katsui et al. [71] prepared 
cubic and tetragonal LLZO film on polycrystalline Al2O3 by metal organic chemical vapor deposition with a high rates of 
20 μm h-1. Additionally, they investigated the influence of deposition temperature (Tsub), a key factor in the process, on the 

Figure 2. (a) SEM cross-section image of a 200 nm thick Li–La–Zr–O film[65];(b) SEM image of a polished cross section of the Li-La-Zr-O film 
deposited on an AAO substrate at 700 °C and the corresponding EDS profile along the indicated line[65];(c) An as-deposited Li7La3Zr2O12 
based thin film deposited on a single crystal MgO substrate at 50 °C by PLD, cross-sectional SEM micrograph[61]; (d)-(e) Cross sectional 

SEM of LLZO films [64]: (d) sapphire substrate at room temperature; (e) sapphire substrate at 700°C 
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Table 1. List of the garnet type films by the PLD technique with an outline of the material, year, substrate, thickness, room temperature ionic 
conductivity and activation energy

Material Year Substrate Thickness RT σLi [S cm-1] Ea [eV] Ref.

Li6.4La3Zr1.4Ta0.6O12 2017 MgO (100) ~40 nm - - [58]

Li7La3Zr2O12 2012
STO (100)

Sapphire (0001)
-

7.36×10-7

3.35×10-7

0.32

0.36

[60]

[59]

Al-Li7La3Zr2O12 2013 AAO 1000 nm - -
[66]

Al-Li7La3Zr2O12 2016 MgO (100) 90-380 nm 1.2×10-3 1.39
[67]

Li6BaLa2Ta2O12 2014 MgO (100) ~200 nm 2×10-6 0.42
[62]

Al-Li7La3Zr2O12 2013
GGG (001)

GGG (111)

26.2 nm

30.4 nm

2.5×10-6

1.0×10-5

0.55

0.52

[68]

Li7La3Zr2O12 2015 MgO (100) 100–200 nm 1.61×10-6 0.35
[65]

formation of phase, morphology and deposition rates. When Tsub was 973 K, a pyrochlore type La2Zr2O7 film having the 
(111) orientation was deposited. In the range from 1023 to 1173 K of Tsub, the phase of LLZO films was tetragonal. Cubic
LLZO films with fine granular surface were obtained at Tsub = 1173-1223 K. Figure 5c and 5d showed the tetragonal 
LLZO film at 1073 K and the cubic LLZO film at 1223 K.

Loho et al. [72] prepared the tetragonal LLZO film on Pt layer by a novel CO2-laser assisted chemical vapor deposition 
(LACVD) technique. The total ionic conductivity of the tetragonal LLZO film was 4.2×10-6 S cm-1 at 298 K with an 
activation energy of 0.50 eV, which was in good agreement with bulk ceramics tetragonal LLZO. In addition, the study 
presented that the deposition temperature and oxygen partial pressure had great effect on the quality of the LLZO film. In 
the condition of 973 K and 40% O2, the film, in Figure 5a, showed homogeneous, high density and free of cracks. Figure 
5b displayed the Arrhenius plot in the temperature range from 338 K to 298 K for the total Li-ion conductivity of the 
LLZO film. An exponential fit (black line) is applied to the data (red rhombs).
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Figure 3. SEM images of the cross section (a, b, c)[69] of Li–La–Zr–O thin films deposited at 40 W (a), 60 W (b) and 80 W (c); (d)-(e) 
Microstructure of the thin films deposited at 700 °C and 800 °C [70](d) cross-section, BSE-image, 700 °C, (e) cross-section, BSE-image, 800 

°C; (f) Impedance data of thin film deposited at 700 °C, Li-ion conductivity σ in dependence of temperature T.

Table 2. Review of the literature on garnet type film by the RF technique with an outline of the material, year, substrate, thickness, room 
temperature ionic conductivity and activation energy

Material Year Substrate Thickness RT σLi [S cm-1] Ea [eV] Ref.

Li-La-Zr-O 2012 Si/SiO2 wafer

561 nm

861 nm

941 nm

4×10-7

2×10-7

0.8×10-7

0.7

0.81

0.87

[69]

Li7La3Zr2O12 2016 Stainless steel ~1 μm
1.2×10-4(in-plane)

2.0×10−9  (perpendicular to the 
plane)

0.47 [70]
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Figure 4. Schematic of a cold wall type MOCVD apparatus[71]

Figure 5. (a) Secondary electron micrographs of LLZO thin films deposited at 973 K and 40% O2 on Si, shows the LLZO cross section[72]; 
(b) Arrhenius plot in the temperature range from 338 K to 298 K[72] (c)-(d) SEM images for Li–La–Zr–O films[71]; Cross-sectional 

morphologies of the tetragonal Li7La3Zr2O12 at 1073 K (c) and cubic Li7La3Zr2O12 at 1223 K (d) are also included
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Table 3. Review of the literature on garnet type film by CVD technique with an outline of the material, year, substrate, thickness, room 
temperature ionic conductivity and activation energy

Material Year Substrate Thickness RT σLi [S cm-1] Ea [eV] Ref.

Li7La3Zr2O12 2017 Pt 850 nm 4.2×10-6 0.5
[73]

Li7La3Zr2O12 2015 Poly-Al2O3 ~1 μm - -
[74]

2.4 Atomic layer deposition (ALD)

Figure 6. (a) SEM image showing as-deposited ALD LLZO film on a Si substrate, (b) SEM image showing the ALD film from the top of a Si 
trench shown in (c), (d) SEM image showing the ALD coating at the bottom of a Si trench, (e) TEM image showing the ultrathin conformal 
coating at the tip of a ZnO nanowire, and (f) TEM image showing a sharp film/wire interface, with electron diffraction (inset) showing the 

amorphous nature of film [77]

In the field of battery research, atomic layer deposition (ALD) has its applications in preparing electrode materials. 
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Atomic layer deposition provides an exciting opportunity for functional barrier layers in perovskite solar cells. Bent et 
al. [75] prepared an ALD SnO2 contact layer as a “built-in” barrier layer on C60 dramatically improves device stability over 
typical p-i-n devices with only organic electron transport layers, which resulted in superior barrier properties. In the field 
of lithium ion battery, Zhang et al. [76]prepared the modified the LiNi0.8Mn0.1Co0.1O2(NMC811) cathode by coating and 
subsequent infusion of the LPO solid-state electrolyte along the grain boundaries of secondary particles by atomic layer 
deposition. And the result  demonstrated that the modified NMC811 layered cathode by ALD method can significantly 
enhance its structural and interfacial stability, and lead to the long-term cycle stability of both capacity and voltage. Atomic 
layer deposition has been applied to be a powerful technique for interfacial modification of Li-ion and Li-metal electrodes 
and for the deposition of solid electrolytes in complex 3D architectures [77]. Kazyak et al. [77] demonstrated a viable ALD 
process for depositing Al-doped LLZO(Li6.28La3Zr2O12Al0.24) films with a low amount of impurities, tunable composition, 
and self-limiting behavior. The film, Figure 6a, was prepared on the Si (1 0 0) substrate at a scale of 86 nm. In addition, 
ALD showed a good ability to deposit LLZO films on 3D-structured substrates, such as Si wafer in Figure 6b-6d and 
single-crystal ZnO nanowires in Figure 6e-6f. The Al-doped stoichiometric film had an ionic conductivity of 7.8 × 10−5 S 
cm-1 at 200 °C and 1.2 × 10−6 S cm-1 at 100 °C, giving an activation energy of 0.63 eV/atom and a calculated conductivity 
of approximately 1 × 10−8 S cm-1 at 25 °C [77].
2.5 Aerosol deposition (AD) method

 Aerosol deposition (AD) films can be formed at room temperature and show dense microstructures having no 
annealing process which avoided the reaction between electrolytes and active materials. Figure 7 exhibited the apparatus 
and the schematic diagram of AD process.

Figure 7. (a) Apparatus of AD process[78] (b) Schematic diagram of AD process[79]

Hanft et al. [78] fabricated a cubic garnet solid electrolyte AlyLi7-3y-zLa3Zr2-zTazO12 (ALLZTO) by the aerosol deposition 
method. The as-deposited films in figure 8a showed a thickness of ~10 μm and a reduced conductivity around 2.0 × 10−7 
S cm-1. They studied a thermal post-treatment of the film, which revealed the morphological and the related impact on the 
ionic conductivity. According to the results, the film showed an ionic conductivity of 2.0 × 10−5 S cm-1 at 400 °C and 7.0 × 
10−5 S cm-1 at 600 °C.

Ahn et al. [79] investigated the microstructure and ionic conductivity of LLZO aerosol deposition film. Figure 8b 
showed the SEM of the raw LLZO powder and the prepared LLZO AD film.  In figure 8b, The LLZO aerosol deposition 
film, with a thickness of 20 μm，showed the dense microstructure which had nano-size grains. However，the ionic 
conductivity was 1.0 × 10−8 S cm-1 at 140 °C.
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Figure 8. (a) 3D-Laser-Scanning image of ALLZTO film[78] (b) SEM and TEM images of LLZO powder and AD film [79]

3. Sol-gel method
With the harsh vacuum condition, compared with pulsed laser deposition and radio frequency, sol-gel method exhibits 

lots advantages on low cost, easy synthesis and flexible chemical components.
In the year of 2014, Chen et al. [80] prepared Li-La-Zr-O film on the Si substrate by a sol-gel spin coating method. In 

the work, they studied the effects of the annealing temperature and the number of layers on ionic conductivity of the films. 
With the annealing temperature increased from 600 °C to 800 °C，the ionic conductivity of the films decreased from 
1.67×10-6 S cm-1 to 8.53×10-7 S cm-1. The thickness of the films could be controlled by the number of layers. Figure 9a was 
the SEM images of cross section Li-La-Zr-O thin films with different layers. According to the result, by adding the layer 
from 2 to 12, the thickness increased from 130 nm to 538 nm. 

Through a sol-gel dip-coating process, on the substrate of MgO, Tadanaga et al. [79] fabricated Al doped Li7La3Zr2O12 
using a precursor sol from Zr-alkoxide and Li, La and Al nitrates. After the heat-treatment at 900 °C，the LLZO film 
showed an ionic conductivity of 2.4×10-6 S cm-1.

Zarabian et al. [82] prepared Li-La-Zr-O film by sol-gel spin-coating method at a lower annealing temperature on 400 
°C. The film was fabricated on the top surface of MgO (100) and LiCoO2 pellets. The thickness of the films was 760 nm on 
the substrate of MgO (100) and 3606.4 nm on the LiCoO2 pellets, which was in Figure 9b and 9c The X-ray photoelectron 
spectroscopy analysis of the interface between LiCoO2 and Li-La-Zr-O film showed that Co diffuses from the substrate 
toward the solid electrolyte.



Organic Chemistry Plus 16 | Weiqiang Han, et al.

Figure 9. (a) SEM images of cross section Li-La-Zr-O thin films with different layers[80]; (b)cross section SEM image of a broken layer shows 
dense and crack-free layer on MgO [82]; (c)SEM cross section image of Li-La-Zr-O on LiCoO2 substrate, along with mapping, showing 

dense electrolyte [82]

Table 4. Review of the literature on garnet type film by sol-gel technique with an outline of the material, year, substrate, thickness, room 
temperature ionic conductivity and activation energy

Material Year Substrate Thickness RT σLi [S cm-1] Ea [eV] Ref.

Li-La-Zr-O 2014 Si 130-538 nm

1.67×10-6 at 600 oC; 

8.53×10-7 at 800 oC

0.18-0.21 [83]

Al-Li7La3Zr2O12 2015 MgO - 2.4×10-6 -
[84]

Li-La-Zr-O 2017 MgO 760 nm - 0.6
[85]

4. Focused ion beam (FIB) milling
Focused ion beam milling is another way to prepare LLZO thin film. Gong et al. [86] reported a method by in-situ 

atomic-scale observation of electrochemical delithiation in all-solid-state battery. They constructed an all-solid-state LIB 
with a gold anode, a LiCoO2 cathode, and Y and Ta doped LLZO (Li6.75La2.84Y0.16Zr1.75Ta0.25O12) as the solid-state electrolyte 
(thickness less than 2 μm) on a micro-electro-mechanical system (MEMS) device nano-chip using FIB milling (in Figure 
10). Compared with the performance in liquid electrolyte batteries，they found that the pristine single crystal LiCoO2 
became nano-sized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage 
delithiation [86].

Figure 10. SEM image of the FIB fabricated battery on the nanochip to apply the electric field [86]
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5. Composite electrolyte thin film
Due to the inherent characteristics, harsh preparation condition or some other reasons, none of the LLZO films, 

prepared by the methods in the above sections, has no applications or play a role in all solid state battery. This section 
highlights the LLZO composite electrolyte film, which has already come into use in ASSB.

The ionic conductivity of composite electrolyte was enhanced greatly after adding LLZO nano-particles or nano-
wires, because the adding nano-sized LLZO took place in decreasing the crystallinity of polymer [87-89] and in providing 
more lithium ion pathway [90-93]. In addition, Liu et al. [94] found that well-aligned LLZO nanowires enhanced the ionic 
conductivity effectively. Zhang et al. [95] discussed the role of LLZO particles size on improving the conductivity. Mass of 
LLZO composite electrolytes have applied in all-solid-state battery [96-100]. According to the results, the thickness of LLZO 
composite electrolyte film was in the range from dozens to hundreds micron. For example: the work [95] of PEO:LLZTO 
membrane electrolytes showed a thickness of 40 μm, with an ionic conductivities of 2.1×10-4 S cm-1 at 30 ºC and 5.6×10-

4 S cm-1 at 60 ºC. The film showed good rate capability and cycle performance both with LFPO and LFMP-based cathodes. 
Chen et al. [97] fabricated a LLZTO composite membrane of 70 μm thickness by hot pressing without any organic solvent. 
The LiFePO4/Li batteries with“polymer-in-ceramic” electrolyte PEO-LLZTO-PEG-60 wt% LiTFSI delivered excellent 
cycling stability.

Yan et al. [101,102] introduced an easy method of tape casting the nano-particle slurry to prepare LLZO film with the 
thickness of several micrometers. The schematic illustration, in Figure 11a, showed all the steps of the process. The 
thickness of the film was about 3 μm according to the SEM images in Figure 11c and 11d. The ionic conductivity of film, 
showed in Figure 11b, was 5.55×10-6 S cm-1 at 20 ºC and 6.96×10-5 S cm-1 at 100 ºC. In the report, the LLZO was used 
as the solid electrolyte in the Li/LLZO/LFPO battery. As shown in Figure 11e, the cell showed a discharge capacity of 
136.8 mAh g-1 after 100 cycles at a rate of 0.1 C at room temperature. In Figure 11f, at 60 ºC, the cell showed a discharge 
capacity of 146.2 mAh g-1 after 100 cycles at 0.1 C, which was 99.4% of the second cycle. In addition, the LLZO film 
was also applied in the cell of Li/LLZO/LCO. Figure 11g and Figure 11h showed the surface and the section of solid 
electrolyte and cathode layer. The cycling performance of Li/LLZO/LCO at different rates was shown in Figure 11i.

Figure 11. (a) Schematic illustration of the synthesis procedure; (b) Arrhenius conductivity plots of LLZO film; (c) The SEM of the section 
of LFPO cathode layer and LLZO film; (d) The ESB of the section of LFPO cathode layer and LLZO film; (e) cycling performance and 
coulombic efficiency of Li/LLZO/LFPO at room temperature; (f) cycling performance and coulombic efficiency of Li/LLZO/LFPO at 
60 °C; (a)-(f) in the reference [101] (g)-(i) in the reference(g) The SEM of the surface of LLZO film; (h) The SEM image of the section of 

cathode layer and LLZO film; (i) cycling performance and coulombic efficiency of Li/LLZO/LCO [102]
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6. Summary and perspectives
In conclusion, different methods have been developed to prepare LLZO films by now. According to the results 

and data summarized in above sections, different methods have their own pros and cons. Deposition methods shows 
the advantages in thickness of LLZO film. Especially, the films prepared by PLD and ALD show the best results. The 
technique of RF has the highlight of controlling the thickness of film by changing the power. The film obtained by 
deposition method is as thin as in nanoscale. But deposition methods have disadvantages in harsh preparation condition, 
such as: vacuum condition and substrate condition. Sol-gel method is an easy synthesis and low cost way to fabricate 
LLZO film, no matter the substrate conditions. But the method has the weakness on the substrate condition and very long-
period experiment. The method of tape casting LLZO shows a simple operation and easy synthesis. But the films obtained 
by this method are thicker than by other methods.

According to the update reports, LLZO film-electrolytes have inferior ionic conductivity compared with bulk ceramic 
electrolyte. However, LLZO film- electrolytes, especially for the ultrathin film, have the inherent advantages due to the 
thickness. With the increasing demand for the micro-sized power source and the development of the fabricating technique, 
the film type electrolytes will be better and further improved.  
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