
Research Reports on Computer Science Volume 1 Issue 1|2022| 13

Research Article

A Simple and Efficient Technique to Generate Bounded Solutions for
the Generalized Assignment Problem: A Guide for OR Practitioners

Anthony Dellinger1, Yun Lu2, Bryan McNally1, Myung Soon Song2, Francis J. Vasko2*

1Computer Science Department, Kutztown University, Kutztown, PA, USA
2Department of Mathematics, Kutztown University, Kutztown, PA, USA
 E-mail: vasko@kutztown.edu

Received: 14 July 2021; Revised: 22 September 2021; Accepted: 25 October 2021

Abstract: The generalized assignment problem (GAP) is a NP-hard problem that has a large and varied number
of important applications in business and industry. Approximate solution approaches for the GAP do not require
excessive computation time, but typically there are no guarantees on solution quality. In this article, a methodology
called the simple sequential increasing tolerance (SSIT) matheuristic that iteratively uses any general-purpose integer
programming software is discussed. This methodology uses a sequence of increasing tolerances in conjunction with
optimization software to generate a solution that is guaranteed to be within a specified percentage of the optimum in a
short time. SSIT requires no problem-specific coding and can be used with any commercial optimization software to
generate bounded solutions in a timely manner. Empirically, SSIT is tested on 51 GAP instances (24 medium and 27
large) in the literature. The performance of CPLEX versus Gurobi on these 51 GAP test instances is also statistically
analyzed.

Keywords: matheurstic, CPLEX, Gurobi, generalized assignment problem, bounded solutions

1. Introduction
The generalized assignment problem (GAP) is an interesting NP-hard combinatorial optimization problem (COP)

that can be considered both as an assignment problem as well as a knapsack-type problem. As an assignment problem,
the GAP seeks an optimal assignment of n jobs to m agents where each agent has a maximum time to process jobs.
Alternatively, the GAP can be viewed as a knapsack-type problem in which each of n items must be inserted into exactly
one of m knapsacks. Each of the n items has a weight specific to each knapsack and each knapsack has a maximum
weight that cannot be exceeded. Both the minimization and maximization type objective functions are used for the GAP.
In this article, without loss of generality, the focus will be on the minimization GAP. The mathematical formulation for
the GAP will be described in terms of the knapsack interpretation.

Define the binary variable xij equal to 1 if and only if item j is assigned to knapsack i. The formulation of the
minimization case of the GAP is the following.

Copyright ©2021 Francis J. Vasko, et al.
DOI: https://doi.org/10.37256/rrcs.1120221039
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Research Reports on Computer Science
https://ojs.wiserpub.com/index.php/RRCS/

https://www.wiserpub.com/
https://ojs.wiserpub.com/index.php/RRCS/

Research Reports on Computer Science 14 | Francis J. Vasko, et al.

 1 1= =
∑∑

m n

ij ij
i j

c x

1

1

,

1,

=

=

≤

=

∑

∑

n

ij ij i
j

m

ij
i

a x b

x

where cij is the cost of assigning item j to knapsack i, bi is the capacity of knapsack i and aij is the weight of item j if
assigned to knapsack i. The objective function (1) is to minimize the total assignment cost of items (jobs) to knapsacks
(agents). Constraints (2) denote the capacity availability restriction of each knapsack (agent) and are simply referred to
as the capacity constraints. Constraints (3) ensure that each item (job) is assigned to exactly one knapsack (agent) and
are known as semi-assignment constraints. Finally, constraints (4) ensure that each decision variable is binary.

The GAP formulation has been used to model and solve a variety of real-world problems in many areas including
scheduling, transportation and routing, telecommunications, production planning, location, supply chain and logistics,
and computer processor allocation. An extensive discussion of real-world applications of the GAP can be found in
Oncan [1]. In Oncan [1] Table 1, entitled “Some of the real-life applications of the GAP”, lists information pertaining to
36 real-world applications of the GAP.

Since there are numerous real-world applications of the GAP, it is important to provide operations research (OR)
practitioners with simple, effective and efficient solution approaches to solve these problems. However, it is even more
important that OR practitioners can present to management for implementation, systems that generate guaranteed high-
quality solutions. This is true regardless if the OR practitioner is called on to assist with a critical strategic planning
issue or to implement an optimization module in a production system that is executed daily.

In general, given a set of test problem instances, approximate solution method results are compared to optimal or
best-known results that were determined by executing an exact algorithm for a long period of time—sometimes up to
24 hours [2] or more! Researchers assume that, if an approximate solution method performs well on a limited set of
problem instances, it will perform well on other problems. This is the weakness of using approximate solution methods
with no guaranteed bounds on solution quality.

Some algorithms developed to solve NP-hard combinatorial optimization problems make use of commercial integer
programming software to solve small or moderate-sized subproblems. On the other hand, for decades, OR practitioners
have generated feasible solutions to industrial applications of COP by executing commercial integer programming
software for long execution times. In this article, a procedure that iteratively uses commercial integer programming
software with no algorithm-specific code required is documented. This procedure, called the simple sequential
increasing tolerance (SSIT) matheuristic, will be shown, using 51 GAP from the literature, to quickly generate solutions
that are guaranteed to be very close to the optimums. This multi-pass matheuristic is used in conjunction with an integer
programming software (both CPLEX and Gurobi were tested) package and employs a sequence of increasing tolerances
that are used with the integer programming software. If a goal bound on the solution is not achieved in a user-defined
time interval, the best solution found at one tolerance is then input as a starting solution for the next looser tolerance.

SSIT was first discussed in McNally [3], and one key feature of the SSIT solutions is that they are guaranteed to
be within a tight tolerance of the optimum. Another important feature of SSIT is its iterative use of any general purpose
integer programming software (CPLEX and Gurobi will both be used in this article, but other software packages
could be used just as easily). These features combined with a user-defined sequence of loosening tolerances and
maximum execution times for each tolerance makes SSIT a very flexible solution methodology. SSIT is considered a
matheuristic because it uses math programming combined with a heuristically determined sequence of tolerances and
execution times. Since SSIT takes advantage of the power of a general-purpose exact solution method, no problem-
specific algorithm is required. Because there is no problem-specific algorithm to code, the amount of time required
to implement a solution to an industrial application is greatly reduced. Furthermore, a unique feature of SSIT is that
implemented applications will automatically improve in performance as newer versions of the general-purpose software

Subject to (2)

(3)

(4)xij ∈ {0, 1},

j = 1, …, n

i = 1, …, m

i = 1, …, m and j = 1, …, n

Minimize (1)

Research Reports on Computer Science Volume 1 Issue 1|2022| 15

are implemented for the application.
The rest of this article is organized as follows. In Section 2, the relevant generalized assignment problem literature

will be reviewed. The reader should be aware that there is a large number of articles in the literature that deal with
extensions and topics peripheral to the GAP. These are not discussed in the article. In Section 3, a brief overview of
the SSIT matheuristic will be provided. In Section 4, empirical results from applying the SSIT matheuristic to solve
51 GAP instances with both the CPLEX and Gurobi software packages will be presented. In Section 5, a statistical
analysis comparing the performances of CPLEX and Gurobi will be discussed. In Section 6, this article will close with
conclusions and suggested future work.

2. Relevant literature on the GAP
2.1 Mathematical programming-based solution approaches

The solution approaches based on mathematical programming can be either exact or can be employed in a heuristic
manner. Note that the best solution found by exact approaches is within a tight tolerance of the optimum if the program
terminates before the maximum allowed time limit. A number of mathematical programming-based solution methods
for the GAP have been suggested in the literature. Below are some recent examples applied to solve the GAP.

Woodcock and Wilson [4] discussed a hybrid methodology that combines tabu search with a branch-and-
bound strategy to solve the GAP. The methodology uses commercial software (Xpress-MP) to solve sub-problems
generated with the guidance of the tabu search. The linear programming relaxation of GAP is part of the branch-and-
bound strategy and helps suggest which binary variables should be used. Posta and Ferlande [2] presented a variable
fixing approach to solve the GAP. This is an exact procedure that reformulates the GAP into a sequence of decision
problems that are solved using variable-fixing rules. The decision problems are solved using a depth-first lagrangian
branch-and-bound method that makes use of variable-fixing rules to prune the search tree. Munapo et al. [5] proposed
a transportation branch-and-bound algorithm for solving the GAP. This approach uses a transportation technique to
solve sub-problems in the branch-and-bound algorithm. Sadykov et al. [6] used a column generation-based heuristic
to solve the GAP. This heuristic uses a sophisticated combination of dual stabilization, piecewise linear penalty
functions, Wentge’s dual smoothing, and sub-gradient directional smoothing. Sadykov et al. [7] discussed the benefits of
incorporating diving methods into primal heuristics for branch-and-price procedures. Their methodology is used to solve
the GAP and a number of other combinatorial optimization problems. Bando and Kawasaki [8] show that the core of a
GAP satisfies two types of stability properties. Their results add to the importance of the core in an assignment problem
where agents’ preferences may not be quasilinear. When an OR practitioner is faced with solving a large industrial
GAP, all of the methodologies mentioned above are relatively complex to implement in order to solve a real-world GAP
application. A considerable amount of time can be required for computer coding and testing of the algorithm selected
and then computer execution time for the actual application can be significant.

2.2 Approximate solution approaches

There are many classic approximate solution approaches in the literature. For example, the classic application
of a genetic algorithm (GA) to solve the GAP was proposed by Chu and Beasley [9]. A hybrid GA which included
local search was proposed by Ahmed [10]. Zhi-Bin et al. [11] discuss how to effectively implement a parallel genetic
algorithm in the graphics processing unit (GPU) environment. Specifically, the authors show how a GA can be
efficiently parallelized in a GPU environment to solve the GAP. An Artificial Bee Colony (ABC) algorithm was applied
to solve the GAP by Baykasoglu et al. [12]. A path relinking with ejection chains approach was proposed for solving
the GAP by Yagiura et al. [13]. This algorithm generates new solutions by combining two or more reference solutions.
It uses an ejection chain approach which is embedded in a neighborhood construction to create more complex and
powerful moves.

If an OR practitioner wants to use one of these approximate solution methodologies, the practitioner would
be required to code and test the solution approach. More importantly, all the above-mentioned solution procedures
explicitly designed to solve the GAP provide no guarantees on solution quality! This is in sharp contrast to the SSIT

Research Reports on Computer Science 16 | Francis J. Vasko, et al.

matheuristic, because SSIT uses strictly general purpose software and does provide bounds on the generated solutions
with no problem-specific coding required.

3. Overview of the simple sequential increasing tolerance matheuristic
The motivation behind the simple sequential increasing tolerance (SSIT) matheuristic is to try to have the best of

two worlds. Namely, SSIT makes use of state-of-the-art optimization software (such as CPLEX or Gurobi) combined
with loosening tolerances to obtain solutions that are guaranteed within known and relatively tight tolerances of the
optimum, in a timely manner. By using commercially available, state-of-the-art optimization software instead of
highly complex specialized codes for the particular COP, SSIT can be used in a straightforward manner by both OR
practitioners as well as researchers with no problem-specific coding required. The SSIT matheuristic is very flexible and
robust because the user can specify the number of tolerances as well as their specific values based on their needs. The
maximum execution time for each tolerance is also specified based on the specific needs of the user.

As indicated earlier, SSIT can be considered a multi-pass methodology in which the program terminates if the goal
tolerance is met. If it is not met, then the tolerance is “loosened” and the current best solution is used as input for the
next step in the solution process. The “loosened” tolerance allows the branch-and-bound tree in the commercial software
to be pruned more quickly. The worst-case scenario for SSIT is that it does not terminate until the sum of the maximum
execution times for each tolerance is reached. In this case only, the software gap at termination will indicate how close
the best SSIT solution is to the optimum instead. Specifically, for a minimization COP, the optimization software
provides the gap between the best lower bound and the best solution.

The pseudo code below summarizes the SSIT methodology for a generic COP.

SSIT MATHEURISTIC
1.	 Begin
2.	 Input the number of phases N
3.	 Input tolerance T_i and maximum execution time t_i for phases i=1, …, N
4.	 Input COP details
5.	 Run integer programming software program to solve COP
6.	 For 1<=i<=N-1,
7.	 IF integer programming software running time in phase i is less than t_i or i=N, FINISH
8.	 ELSE,
9.	 Take best solution obtained from phase i and save it as SOL_i.
10.	 Run integer programming software program with SOL_i as the warm start and tolerance T_{i+1} and

maximum execution time t_{i+1}.
11.	 i=i+1
12.	 LOOP through step 7-11 until FINISH

The flow chart of SSIT is also provided in Figure 1.
The benefit of SSIT using general purpose integer programming software such as CPLEX or Gurobi and, at the

same time, requiring no problem-specific coding is significant. For the SSIT problems discussed in this article, all the
software default settings were kept except the time and tolerance per SSIT pass. In particular, the OR practitioner or
researcher does not need to develop, code, and test a problem-specific algorithm. Furthermore, practitioners will find
that there is a wealth of examples that come with most optimization software (definitely CPLEX and Gurobi), which
are ready to run out of the box. These templates often only require a few adjustments before they are ready to run
domain specific combinatorial optimization problems. Practitioners can also quickly find answers to many software
specific questions in the online forums and extensive manuals. Additionally, for industrial systems that use SSIT, the
performance of these systems is “automatically” improved when new versions of the optimization software are installed.
SSIT saves the practitioner time writing extensive code and testing different parameter settings with its ability to quickly
find templates and models for various problems and to run a problem with pre-defined defaults that work well with
many problems.

Research Reports on Computer Science Volume 1 Issue 1|2022| 17

Figure 1. SSIT flowchart

It is important to note that there is no need to “optimize” either the number of tolerances used or their values
as well as the execution times for each tolerance. These values are both user and problem specific and can be easily
adjusted to meet the users’ needs! A few scenarios will now be given to illustrate the nature of SSIT. More details are
provided in McNally [3].

Suppose that, for a particular application, getting a solution that is guaranteed to be very close to the optimum
is important and execution time is not top priority. In this case, the tolerance sequence might be set to 0.0001, 0.001,
0.004, 0.007, and 0.01 with the maximum execution time sequence of 300, 300, 300, 300, and 200 seconds respectively
for a total possible execution time of 1,400 seconds. Furthermore, suppose, for example, a COP is solved with these
SSIT settings and it terminates after 10 seconds at a tolerance of 0.007. This means that the best solution is guaranteed
within 0.7% of the optimum and required a total of 910 seconds of execution time. Because SSIT terminated after only
10 seconds at a tolerance of 0.007, the user might want to see if this solution bounds the optimum within a tighter bound

Set integer programming
software’s tolerance to T_i

and maximum execution time
to t_i

Set warm start for integer
programming software to the

current solution

Run integer programming
software

i=1

Input COP details

Input tolerance T_i and
maximum execution time t_i

for phases i=1, ..., N

Input the number of phases N
and initialize i to 1

Increment i

Start

End

Check if the software
reached the time limit t_iCheck if T_(i+1) is defined

Yes

Yes

NoNo

Research Reports on Computer Science 18 | Francis J. Vasko, et al.

of 0.4%. Checking this is very simple to do. Simply set the optimization software tolerance at 0.004 and the maximum
execution time at say 1,200 seconds, and input the best solution found so far. If the optimization software terminates in
less than 1,200 seconds, then the best solution found will be guaranteed to be within 0.4% of the optimum. On the other
hand, if the software terminates because the maximum time limit of 1,200 seconds was reached, then the user still has
a solution that is guaranteed to be within 0.7% of the optimum from the previous SSIT runs. Additionally, the software
gap at termination will indicate how close the best SSIT solution is to the optimum, which will be less than 0.7%, but
greater than 0.4%.

Alternatively, suppose a large amount of computations are being performed in a nightly production planning run
and only 600 seconds are allocated per problem. In this case, a tolerance sequence of 0.001, 0.005, 0.01, 0.02, and 0.05
with the maximum execution time sequence of 200, 100, 100, 100, and 100 seconds respectively would be reasonable,
since it requires at most a total execution time of 600 seconds.

Although it is common for OR practitioners to use commercial software at the default tolerance for a fixed amount
of time and use the best solution generated when the execution time “runs out”, SSIT provides an alternate to this
approach that will be shown to provide bounded solutions quickly.

4. GAP empirical results
4.1 Problem instances

In this article, we will test SSIT on 51 GAP instances (types B, C, D, and E) that are available from Yagiura et al.
[13]. These GAP instances are used by researchers to test algorithm performance. Type A instances from Beasley’s OR-
Library are not included here because they are small and easy to solve optimally with current software packages. Types
D and E are more difficult to solve because the cij and aij are inversely correlated.

MEDIUM GAP instances: Total of 24 instances of types B, C, D and E with n (number of items or jobs) up to
200, where each type consists of six instances. Among them, types B, C and D instances were taken from Beasley’s
OR-Library [http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html] and type E instances were taken from Yagiura's
GAP instances [http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/gap/].

LARGE GAP instances: Total of 27 instances of types C, D and E with n (number of items or jobs) up to 1600,
where each type consists of nine instances. These instances were taken from Yagiura's GAP instances [http://www-or.
amp.i.kyoto-u.ac.jp/~yagiura/gap/].

Details of these 51 GAP instances are given in Table 1.
The first number in the problem label is the number of items or jobs and the second number is the number of

knapsacks or agents. Note that the number of variables in these 51 instances range from 500 to 128,000 and the number
of constraints range from 105 to 1,680.

4.2 SSIT results for the GAP

In order to use the SSIT matheuristic to solve GAPs, a sequence of increasing tolerances and corresponding
maximum execution times must be specified and an integer programming software package must be selected.
The purpose of this article is to demonstrate that the SSIT matheuristic works effectively with any given integer
programming software package. Obviously, the better the selected optimization software is in terms of generating good
solutions quickly, the better the solution the SSIT matheuristic generates. Additionally, as new versions of the selected
software are implemented, the performance of industrial applications will be improved with no input required from the
OR practitioner who developed the application—another advantage for using SSIT.

In this article, the two leading optimization software packages: CPLEX (12.9) and Gurobi (9.1) will be used to
solve the 51 GAP test instances in the three cases below.

BASE CASE: The 51 GAP instances are solved with a tolerance of 0.0001 and a maximum execution time of 3,600
seconds.

CASE 1: The 51 GAP instances are solved with the following five-step SSIT strategy (tolerances, time): 0.0001 for
150 seconds, 0.001 for 150 seconds, 0.004 for 300 seconds, 0.007 for 300 seconds, and 0.01 for 300 seconds.

http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/gap/
http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/gap/
http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/gap/

Research Reports on Computer Science Volume 1 Issue 1|2022| 19

Table 1. 51 GAP instances

24 medium sized problem instances 27 large sized problem instances

Problem # Variables # Constraints Problem # Variables # Constraints

B-100-5 500 105 C-400-10 4000 410

B-100-10 1000 110 C-400-20 8000 420

B-100-20 2000 120 C-400-40 16000 440

B-200-5 1000 205 C-900-15 13500 915

B-200-10 2000 210 C-900-30 27000 930

B-200-20 4000 220 C-900-60 54000 960

C-100-5 500 105 C-1600-20 32000 1620

C-100-10 1000 110 C-1600-40 64000 1640

C-100-20 2000 120 C-1600-80 128000 1680

C-200-5 1000 205 D-400-10 4000 410

C-200-10 2000 210 D-400-20 8000 420

C-200-20 4000 220 D-400-40 16000 440

D-100-5 500 105 D-900-15 13500 915

D-100-10 1000 110 D-900-30 27000 930

D-100-20 2000 120 D-900-60 54000 960

D-200-5 1000 205 D-1600-20 32000 1620

D-200-10 2000 210 D-1600-40 64000 1640

D-200-20 4000 220 D-1600-80 128000 1680

E-100-5 500 105 E-400-10 4000 410

E-100-10 1000 110 E-400-20 8000 420

E-100-20 2000 120 E-400-40 16000 440

E-200-5 1000 205 E-900-15 13500 915

E-200-10 2000 210 E-900-30 27000 930

E-200-20 4000 220 E-900-60 54000 960

E-1600-20 32000 1620

E-1600-40 64000 1640

E-1600-80 128000 1680

CASE 2: The 51 GAP instances are solved with the following four-step SSIT strategy (tolerances, time): 0.001 for
300 seconds, 0.004 for 300 seconds, 0.007 for 300 seconds, and 0.01 for 300 seconds.

The Base Case is a methodology commonly used by OR practitioners in which the software is allowed to run up
to a certain time. If the maximum time is reached, then the best solution is provided to the OR practitioner, and the gap
between the lower bound and the best solution generated (minimization) is an after-the-fact measure of the solution
quality. The Case 1 and 2 tolerances and execution times were based on some preliminary empirical analysis of the 51
test instances and both have a maximum execution time of 1,200 seconds. The Case 1 strategy focuses on tighter bounds
starting with a tolerance of 0.0001. The Case 2 strategy has a ‘looser՚ starting tolerance and is expected to require less
execution time than Case 1 but might have looser bounds on the solutions. These two SSIT cases are compared with the
Base Case to demonstrate the benefit of using the SSIT matheuristic. Remember that the SSIT provides OR practitioners
with a methodology that iteratively uses commercial integer programming software to generate tightly bounded
solutions in a short time.

The 51 GAP instances will be solved a total of six times—three times (Base Case, Case 1, and Case 2) with CPLEX
and three times with Gurobi. The threads parameter was set to 4 in all cases. Except for tolerances and execution times
as specified above, all other software parameters will have their default settings. All executions of CPLEX and Gurobi

Research Reports on Computer Science 20 | Francis J. Vasko, et al.

were on a compute server with the following specifications: an Intel(R) Xeon(R) CPU E5-2640 v3 processor, 32 GB of
RAM and CentOS Linux 7. The results of the Base Case are given in Table 2. Case 1 results for CPLEX and Gurobi are
given in Tables 3 and 4 respectively. Case 2 results for CPLEX and Gurobi are given in Tables 5 and 6 respectively.

From Table 2, one can observe that using the simple Base Case strategy of running the optimization software at a
tolerance of 0.0001 for up to an hour gave similar results for both CPLEX and Gurobi (a statistical comparison of the
performance of CPLEX compared to Gurobi will be discussed in Section 5). Specifically, the average solution times
per problem for CPLEX and Gurobi were 1,143 and 1,224 seconds respectively. Also, the average guaranteed bounds
on the solutions from the optimums were 0.040% and 0.030% respectively. For CPLEX there were 15 GAP instances
that required the full 3,600 seconds and for Gurobi there were 16 GAP instances that required the full 3,600 seconds. In
Tables 3, 4, 5, and 6, each problem is provided one row for each required tolerance to solve the problem. For example,
in Table 3(B), problem D-400-20 has three rows because this problem terminates at the 0.004 tolerance when the gap is
reduced to 0.00164. However, problem D-1600-20 has only two rows because it terminates at the 0.001 tolerance when
the gap is reduced to 0.00067.

The Case 1 results in Tables 3 and 4 clearly demonstrate the benefits to OR practitioners of choosing SSIT over
the Base Case approach. For both the CPLEX and the Gurobi results Case 1 execution times are reduced by 91% (Table
7 will give a complete summary). At the same time the guaranteed bounds on the optimums are still very tight at an
average bound of 0.060% and 0.045% for CPLEX and Gurobi respectively. The Case 1 solution times and solution
qualities are shown to be excellent. However, Case 2 could be used instead if there is a need to further reduce execution
time. Its results can be found in Tables 5 and 6.

Table 2(A). Base Case results for the 24 medium instances

CPLEX Gurobi

Problem Objective function Time (sec) Final GAP Objective function Time (sec) Final GAP

B-100-5 1843 0.32 0.000% 1843 0.29 0.000%

B-100-10 1407 0.12 0.000% 1407 0.10 0.000%

B-100-20 1166 0.12 0.000% 1166 0.18 0.000%

B-200-5 3552 0.41 0.000% 3552 0.44 0.000%

B-200-10 2827 1.69 0.000% 2827 0.93 0.000%

B-200-20 2339 0.29 0.000% 2339 0.33 0.000%

C-100-5 1931 0.17 0.000% 1931 0.18 0.000%

C-100-10 1402 0.28 0.000% 1402 0.43 0.000%

C-100-20 1243 0.44 0.000% 1243 0.42 0.000%

C-200-5 3456 0.36 0.000% 3456 0.55 0.000%

C-200-10 2806 1.75 0.000% 2806 1.81 0.000%

C-200-20 2391 1.68 0.000% 2391 1.96 0.000%

D-100-5 6353 25.87 0.000% 6353 11.64 0.000%

D-100-10 6348 3600.00 0.051% 6348 3600.01 0.047%

D-100-20 6207 3600.00 0.608% 6211 3600.01 0.580%

D-200-5 12742 1213.05 0.000% 12743 170.08 0.010%

D-200-10 12435 3600.00 0.083% 12437 3600.01 0.080%

D-200-20 12260 3600.00 0.274% 12249 3600.02 0.163%

E-100-5 12681 2.04 0.010% 12681 1.24 0.010%

E-100-10 11577 8.59 0.010% 11577 2.90 0.010%

E-100-20 8436 8.96 0.000% 8436 7.77 0.000%

E-200-5 24930 1.32 0.010% 24930 0.18 0.000%

E-200-10 23307 11.04 0.010% 23307 5.44 0.010%

E-200-20 22379 6.70 0.010% 22379 5.13 0.010%

Research Reports on Computer Science Volume 1 Issue 1|2022| 21

Table 2(B). Base Case results for the 27 large instances

CPLEX Gurobi

Problem Objective function Time (sec) Final GAP Objective function Time (sec) Final GAP

C-400-10 5597 1.45 0.000% 5597 1.26 0.000%

C-400-20 4782 8.47 0.000% 4782 14.98 0.000%

C-400-40 4244 2.41 0.000% 4244 5.63 0.000%

C-900-15 11340 284.30 0.000% 11340 14.75 0.010%

C-900-30 9982 410.23 0.000% 9982 255.07 0.000%

C-900-60 9326 3600.00 0.012% 9327 3600.18 0.011%

C-1600-20 18803 75.52 0.010% 18803 1118.25 0.010%

C-1600-40 17145 1352.91 0.010% 17146 3600.16 0.012%

C-1600-80 16287 3600.00 0.025% 16287 3600.30 0.025%

D-400-10 24970 3600.00 0.047% 24965 3600.02 0.024%

D-400-20 24588 3600.00 0.121% 24591 3600.03 0.130%

D-400-40 24456 3600.00 0.438% 24440 3600.07 0.372%

D-900-15 55420 3600.00 0.033% 55415 3600.07 0.024%

D-900-30 54880 3600.00 0.089% 54879 3600.09 0.086%

D-900-60 54736 3600.00 0.338% 54613 3600.17 0.113%

D-1600-20 97855 3600.00 0.034% 97853 3600.13 0.031%

D-1600-40 97246 3600.00 0.145% 97180 3600.19 0.077%

D-1600-80 97242 3600.00 0.214% 97111 3600.36 0.079%

E-400-10 45749 10.94 0.010% 45748 1.307 0.010%

E-400-20 44877 9.37 0.010% 44877 7.87422 0.010%

E-400-40 44562 184.61 0.010% 44561 184.506 0.010%

E-900-15 102429 3.84 0.010% 102421 11.4457 0.010%

E-900-30 100435 18.37 0.010% 100436 30.3832 0.010%

E-900-60 100157 333.45 0.010% 100155 2243.15 0.010%

E-1600-20 180661 24.97 0.010% 180660 6.88894 0.010%

E-1600-40 178306 40.21 0.010% 178308 69.7459 0.010%

E-1600-80 176835 250.65 0.010% 176835 654.628 0.010%

Research Reports on Computer Science 22 | Francis J. Vasko, et al.

Table 3(A). Case 1 CPLEX SSIT results for 24 medium GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

B-100-5 0.0001 1843 0.32 0%

B-100-10 0.0001 1407 0.12 0%

B-100-20 0.0001 1166 0.32 0%

B-200-5 0.0001 3552 0.41 0%

B-200-10 0.0001 2827 1.70 0%

B-200-20 0.0001 2339 0.29 0%

C-100-5 0.0001 1931 0.17 0%

C-100-10 0.0001 1402 0.28 0%

C-100-20 0.0001 1243 0.43 0%

C-200-5 0.0001 3456 0.36 0%

C-200-10 0.0001 2806 1.75 0%

C-200-20 0.0001 2391 1.68 0%

D-100-5 0.0001 6353 25.87 0%

D-100-10 0.0001 6351 150.00

0.001 6351 150.00

0.004 6351 0.01 0.217%

D-100-20 0.0001 6209 150.00

0.001 6209 150.00

0.004 6209 300.00

0.007 6209 0.01 0.665%

D-200-5 0.0001 12748 150.00

0.001 12748 0.51 0.05%

D-200-10 0.0001 12435 150.00

0.001 12435 147.84 0.1%

D-200-20 0.0001 12267 150.00

0.001 12267 150.00

0.004 12267 0.01 0.4%

E-100-10 0.0001 11577 8.59 0.010%

E-100-20 0.0001 8436 8.96 0.000%

E-200-5 0.0001 24930 1.32 0.008%

E-200-10 0.0001 23307 11.04 0.010%

E-200-20 0.0001 22379 6.70 0.007%

Research Reports on Computer Science Volume 1 Issue 1|2022| 23

Table 3(B). Case 1 CPLEX SSIT results for large GAP instances C and D

Problem Tolerance Objective function Time (sec) Final GAP

C-400-10 0.0001 5597 1.45 0%

C-400-20 0.0001 4782 8.47 0%

C-400-40 0.0001 4244 2.41 0%

C-900-15 0.0001 11348 150.00

0.001 11348 0.69 0.016%

C-900-30 0.0001 9988 150.00

0.001 9988 0.36 0.017%

C-900-60 0.0001 9332 150.00

0.001 9332 0.32 0.038%

C-1600-20 0.0001 18803 75.32 0.010%

C-1600-40 0.0001 17154 150.00

0.001 17154 0.96 0.028%

C-1600-80 0.0001 16293 150.00

0.001 16293 0.66 0.025%

D-400-10 0.0001 24980 150.00

0.001 24980 0.13 0.056%

D-400-20 0.0001 24596 150.00

0.001 24596 150.00

0.004 24596 0.01 0.164%

D-400-40 0.0001 24505 150.00

0.001 24488 150.00

0.004 24488 300.00

0.007 24488 0.01 0.669%

D-900-15 0.0001 55452 150.00

0.001 55452 0.74 0.039%

D-900-30 0.0001 54906 150.00

0.001 54906 150.00

0.004 54906 0.01 0.158%

D-900-60 0.0001 54765 150.00

0.001 54765 150.00

0.004 54765 0.02 0.367%

D-1600-20 0.0001 97906 150.00

0.001 97906 11.72 0.067%

D-1600-40 0.0001 97253 150.00

0.001 97253 150.00

0.004 97253 0.02 0.154%

D-1600-80 0.0001 97255 150.00

0.001 97255 150.00

0.004 97255 0.04 0.365%

Research Reports on Computer Science 24 | Francis J. Vasko, et al.

Table 3(C). Case 1 CPLEX SSIT results for large GAP instances E

Problem Tolerance Objective function Time (sec) Final GAP

E-400-10 0.0001 45749 10.95 0.009%

E-400-20 0.0001 44877 9.38 0.004%

E-400-40 0.0001 44593 150.00

0.001 44593 0.87 0.015%

E-900-15 0.0001 102429 3.84 0.010%

E-900-30 0.0001 100497 18.37 0.008%

E-900-60 0.0001 100241 150.00

0.001 100241 0.37 0.038%

E-1600-20 0.0001 180661 24.97 0.010%

E-1600-40 0.0001 178306 40.21 0.008%

E-1600-80 0.0001 176983 150.00

0.001 176983 106.36 0.080%

Research Reports on Computer Science Volume 1 Issue 1|2022| 25

Table 4(A). Case 1 Gurobi SSIT results for 24 medium GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

B-100-5 0.0001 1843 0.25 0%

B-100-10 0.0001 1407 0.08 0%

B-100-20 0.0001 1166 0.16 0%

B-200-5 0.0001 3552 0.38 0%

B-200-10 0.0001 2827 0.78 0%

B-200-20 0.0001 2339 0.32 0%

C-100-5 0.0001 1931 0.19 0%

C-100-10 0.0001 1402 0.41 0%

C-100-20 0.0001 1243 0.41 0%

C-200-5 0.0001 3456 0.60 0%

C-200-10 0.0001 2806 1.69 0%

C-200-20 0.0001 2391 1.86 0%

D-100-5 0.0001 6353 8.33 0%

D-100-10 0.0001 6351 150.00

0.001 6351 150.00

0.004 6351 0.01 0.126%

D-100-20 0.0001 6220 150.00

0.001 6220 150.00

0.004 6220 300.00

0.007 6220 300.00

0.01 6220 0.01 0.723%

D-200-5 0.0001 12744 150.00

0.001 12744 0.01 0.016%

D-200-10 0.0001 12445 150.00

0.001 12440 150.00

0.004 12440 0.01 0.121%

D-200-20 0.0001 12288 150.00

0.001 12285 150.00

0.004 12260 0.01 0.261%

E-100-5 0.0001 12681 0.55 0.010%

E-100-10 0.0001 11577 2.96 0.010%

E-100-20 0.0001 8436 6.36 0.000%

E-200-5 0.0001 24930 0.18 0.008%

E-200-10 0.0001 23307 6.07 0.010%

E-200-20 0.0001 22379 5.48 0.001%

Research Reports on Computer Science 26 | Francis J. Vasko, et al.

Table 4(B). Case 1 Gurobi SSIT results for large GAP instances C and D

Problem Tolerance Objective function Time (sec) Final GAP

C-400-10 0.0001 5597 1.19 0%

C-400-20 0.0001 4782 13.36 0%

C-400-40 0.0001 4244 5.26 0%

C-900-15 0.0001 11340 14.03 0.01%

C-900-30 0.0001 9988 150.00

0.001 9988 0.03 0.011%

C-900-60 0.0001 9328 150.00

0.001 9328 0.02 0.032%

C-1600-20 0.0001 18804 150.00

0.001 18804 0.04 0.011%

C-1600-40 0.0001 17147 150.00

0.001 17147 0.02 0.017%

C-1600-80 0.0001 16287 150.00

0.001 16287 0.04 0.025%

D-400-10 0.0001 24975 150.00

0.001 24980 0.01 0.064%

D-400-20 0.0001 24615 150.00

0.001 24608 150.00

0.004 24608 0.01 0.199%

D-400-40 0.0001 24468 150.00

0.001 24460 150.00

0.004 24447 300.00

0.007 24447 0.01 0.401%

D-900-15 0.0001 55415 150.00

0.001 55415 0.01 0.023%

D-900-30 0.0001 54896 150.00

0.001 54895 150.00

0.004 54895 0.01 0.155%

D-900-60 0.0001 54660 150.00

0.001 54639 150.00

0.004 54639 0.02 0.161%

D-1600-20 0.0001 97855 150.00

0.001 97855 0.01 0.034%

D-1600-40 0.0001 97220 150.00

0.001 97200 92.58 0.098%

D-1600-80 0.0001 97251 150.00

0.001 97229 150.00

0.004 97229 0.01 0.201%

Research Reports on Computer Science Volume 1 Issue 1|2022| 27

Table 4(C). Case 1 Gurobi SSIT results for large GAP instances E

Problem Tolerance Objective function Time (sec) Final GAP

E-400-10 0.0001 45748 1.52 0.010%

E-400-20 0.0001 44877 8.03 0.010%

E-400-40 0.0001 44568 150.00

0.001 44568 0.01 0.020%

E-900-15 0.0001 102421 12.16 0.010%

E-900-30 0.0001 100436 32.45 0.010%

E-900-60 0.0001 100164 150.00

0.001 100164 0.01 0.022%

E-1600-20 0.0001 180660 5.99 0.010%

E-1600-40 0.0001 178308 67.48 0.010%

E-1600-80 0.0001 176910 150.00

0.001 176910 0.01 0.054%

Table 5(A). Case 2 CPLEX SSIT results for 24 medium GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

B-100-5 0.001 1843 0.18 0100%

B-100-10 0.001 1407 0.04 0.099%

B-100-20 0.001 1166 0.05 0.092%

B-200-5 0.001 3553 0.24 0.093%

B-200-10 0.001 2828 0.95 0.098%

B-200-20 0.001 2340 0.13 0.000%

C-100-5 0.001 1931 0.08 0.100%

C-100-10 0.001 1402 0.20 0.100%

C-100-20 0.001 1243 0.27 0.067%

C-200-5 0.001 3457 0.10 0.092%

C-200-10 0.001 2807 0.57 0.196%

C-200-20 0.001 2392 1.04 0.100%

D-100-5 0.001 6355 1.74 0.099%

D-100-10 0.001 6351 300.00

0.004 6351 0.01 0.196%

D-100-20 0.001 6209 300.00

0.004 6209 300.00

0.007 6209 0.01 0.650%

D-200-5 0.001 12748 17.51 0.071%

D-200-10 0.001 12435 297.84 0.087%

D-200-20 0.001 12267 300.00

0.004 12267 0.01 0.334%

E-100-5 0.001 12688 0.58 0.100%

E-100-10 0.001 11582 2.62 0.093%

E-100-20 0.001 8439 4.96 0.070%

E-200-5 0.001 24936 0.32 0.037%

E-200-10 0.001 23323 0.81 0.093%

E-200-20 0.001 22396 4.88 0.083%

Research Reports on Computer Science 28 | Francis J. Vasko, et al.

Table 5(B). Case 2 CPLEX SSIT results for 27 large GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

C-400-10 0.001 5599 0.27 0.075%

C-400-20 0.001 4784 2.03 0.092%

C-400-40 0.001 4246 1.14 0.089%

C-900-15 0.001 11348 0.69 0.092%

C-900-30 0.001 9988 6.36 0.084%

C-900-60 0.001 9332 20.46 0.092%

C-1600-20 0.001 18813 1.03 0.077%

C-1600-40 0.001 17154 7.0 0.074%

C-1600-80 0.001 16293 11.66 0.061%

D-400-10 0.001 24980 23.13 0.090%

D-400-20 0.001 24596 300.00

0.004 24596 0.01 0.154%

D-400-40 0.001 24505 300.00

0.004 24488 300.00

0.007 24488 0.01 0.568%

D-900-15 0.001 55452 17.74 0.091%

D-900-30 0.001 54906 300.00

0.004 54906 0.01 0.137%

D-900-60 0.001 54765 300.00

0.004 54765 0.02 0.391%

D-1600-20 0.001 97906 161.72 0.086%

D-1600-40 0.001 97253 300.00

0.004 97253 0.02 0.152%

D-1600-80 0.001 97255 300.00

0.004 97255 0.04 0.227%

E-400-10 0.001 45788 1.72 0.097%

E-400-20 0.001 44912 5.02 0.082%

E-400-40 0.001 44593 42.87 0.082%

E-900-15 0.001 102486 1.21 0.066%

E-900-30 0.001 100497 3.11 0.074%

E-900-60 0.001 100241 146.93 0.097%

E-1600-20 0.001 180820 1.24 0.099%

E-1600-40 0.001 178430 9.26 0.079%

E-1600-80 0.001 176983 256.36 0.093%

Research Reports on Computer Science Volume 1 Issue 1|2022| 29

Table 6(A). Case 2 Gurobi SSIT results for 24 medium GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

B-100-5 0.001 1843 0.27 0.100%

B-100-10 0.001 1407 0.08 0.099%

B-100-20 0.001 1166 0.17 0.092%

B-200-5 0.001 3552 0.20 0.093%

B-200-10 0.001 2827 0.47 0.098%

B-200-20 0.001 2339 0.24 0.000%

C-100-5 0.001 1931 0.16 0.100%

C-100-10 0.001 1402 0.43 0.100%

C-100-20 0.001 1243 0.34 0.067%

C-200-5 0.001 3458 0.41 0.092%

C-200-10 0.001 2807 0.53 0.196%

C-200-20 0.001 2392 0.98 0.100%

D-100-5 0.001 6357 1.41 0.099%

D-100-10 0.001 6350 235.73 0.095%

D-100-20 0.001 6207 300.00

0.004 6207 300.00

0.007 6207 0.01 0.516%

D-200-5 0.001 12751 1.23 0.094%

D-200-10 0.001 12436 32.55 0.088%

D-200-20 0.001 12277 300.00

0.004 12277 0.01 0.399%

E-100-5 0.001 12685 0.74 0.079%

E-100-10 0.001 11582 3.31 0.086%

E-100-20 0.001 8443 7.67 0.095%

E-200-5 0.001 24935 0.10 0.052%

E-200-10 0.001 23315 0.21 0.090%

E-200-20 0.001 22396 2.25 0.098%

Research Reports on Computer Science 30 | Francis J. Vasko, et al.

Table 6(B). Case 2 Gurobi SSIT results for 27 large GAP instances

Problem Tolerance Objective function Time (sec) Final GAP

C-400-10 0.001 5599 0.53 0.089%

C-400-20 0.001 4784 1.39 0.084%

C-400-40 0.001 4247 1.49 0.094%

C-900-15 0.001 11346 0.76 0.071%

C-900-30 0.001 9989 3.66 0.090%

C-900-60 0.001 9332 11.25 0.096%

C-1600-20 0.001 18806 2.25 0.032%

C-1600-40 0.001 17154 2.28 0.082%

C-1600-80 0.001 16297 14.94 0.086%

D-400-10 0.001 24979 6.40 0.088%

D-400-20 0.001 24612 300.00

0.004 24612 0.01 0.215%

D-400-40 0.001 24505 300.00

0.004 24488 300.00

0.007 24488 0.01 0.393%

D-900-15 0.001 55452 17.74 0.079%

D-900-30 0.001 54906 300.00

0.004 54906 0.01 0.098%

D-900-60 0.001 54765 300.00

0.004 54765 0.02 0.172%

D-1600-20 0.001 97906 161.72 0.095%

D-1600-40 0.001 97253 300.00

0.004 97253 0.02 0.101%

D-1600-80 0.001 97255 300.00

0.004 97255 0.04 0.125%

E-400-10 0.001 45765 0.58 0.052%

E-400-20 0.001 44912 5.17 0.082%

E-400-40 0.001 44595 10.07 0.094%

E-900-15 0.001 102510 0.71 0.091%

E-900-30 0.001 100503 8.97 0.081%

E-900-60 0.001 100208 33.17 0.071%

E-1600-20 0.001 180810 3.51 0.093%

E-1600-40 0.001 178454 17.42 0.094%

E-1600-80 0.001 176961 22.99 0.091%

Tables 5 and 6 show the results of using the SSIT Case 2 scenario to solve the 51 GAP instances. For Case 2,
the average execution times are 85.4 seconds for CPLEX and 62.5 seconds for Gurobi respectively. On average, the
solutions are guaranteed to be within 0.085% and 0.080% of the optimums for CPLEX and Gurobi respectively. It is up
to the user to decide which case is more appropriate for the application being solved. Table 7 summarizes the results of
these three cases (Base Case, Case 1, and Case 2).

Table 7 clearly validates the benefit of SSIT compared with the Base Case approach. This appears to be true
regardless of the chosen software (CPLEX or Gurobi). The average time reduction in using CPLEX is 91% for Case 1
and 93% for Case 2 respectively. The average time reduction in using Gurobi is 91% and 95% for Case 1 and Case 2
respectively.

Research Reports on Computer Science Volume 1 Issue 1|2022| 31

Table 7. Summary comparison of Base Case, Case 1, and Case 2 for both CPLEX and Gurobi

CPLEX Gurobi

Case Guaranteed bound Time (sec) Guaranteed bound Time (sec)

Base Case 0.040% 1143 0.030% 1224

Case 1 0.060% 108 0.045% 115

Case 2 0.085% 85 0.080% 63

4.3 GAP SSIT results compared to other results in the literature

Although the authors (as OR practitioners) appreciate the guaranteed bounds that the SSIT matheuristic provides,
there may be readers who are interested in seeing how the SSIT solutions compare to other available results in the
literature. First of all, due to their large sizes, the 51 GAP testing instances in this article were not used in many
metaheuristic approaches. Several approaches in the literature tend to use smaller GAP instances for testing purposes.
For example, Ahmed [10] used test problems with at most 200 items. Although there are no guarantees on solution
quality, the metaheuristic of Yagiura et al. [13] is the best performing metaheuristic on these 51 GAP instances. To
determine the quality of the Yagiura et al. [13] solutions, these results are compared to the best results from the Posta
and Ferland [2] variable fixing approach, the column generation approach of Sadykov et al. [6], and the diversified
diving method of Sadykov et al. [7]. Although both Sadykov et al. [6] and Sadykov et al. [7] do not provide computer
hardware details, they report execution times that can exceed 10,000 seconds. The average deviation of the Yagiura et al.
[13] metaheuristic results from the best known results mentioned above is 0.022%. However, the quality of the Yagiura
et al. [13] metaheuristic results are not known until these results are compared to the best known results which required
considerable computer resources. The Yagiura et al. [13] is a sophisticated algorithm and computer code. Furthermore,
if any industrial GAP application is solved by coding and using the Yagiura et al. [13] metaheuristic, there is absolutely
no guarantee on the solution quality. This is in sharp contrast to the SSIT matheuristic being used to solve an industrial
GAP application. SSIT benefits include: no problem-specific computer code would be required, there would be a
guaranteed bound on the solution quality, and improved performance is automatic as newer versions of the software
become available.

In Sadykov et al. [6, 7], the authors report that they have found an optimal solution for D-900-15 to be 54404.
They did in fact find the optimal solution, but the optimal objective function is incorrect. In Table 2 of Sadykov et al. [6],
a solution is given for D-900-15 which is reported to have an objective function value of 54404 which is lower than the
dual bound of 55404. When the authors of this article evaluated the Table 2 solution, its objective function was 55404
which agrees with the lower bound, hence is the optimum. So, the optimal value for D-900-15 should be reported as
55404.

5. Statistical comparison of CPLEX and Gurobi results for the 51 GAP instances
In this section, we will conduct a statistical analysis with the 51 GAP instances to compare the performance of

CPLEX to Gurobi in terms of time and gap. The paired t-tests [14] is used for case-by-case comparisons between
CPLEX and Gurobi.

5.1 Comparison of CPLEX and Gurobi - Base Case

Table 8 summarizes the results from the paired t-test to compare the time (or gap) of CPLEX to the counterpart of
Gurobi in Base Case (Case 0). At the significance level of 0.01, there is no significant difference between CPLEX and
Gurobi in terms of time (or gap) since its p-value of 0.218 (or 0.090) is greater than 0.01.

Research Reports on Computer Science 32 | Francis J. Vasko, et al.

Table 8. Summary of paired t-test - Base Case (Case 0)

Time Gap

Descriptive Statistics
Sample N Mean StDev SE Mean
time0_cplex 51 1143 1622 227
time0_gurobi 51 1224 1660 232

Descriptive Statistics
Sample N Mean StDev SE Mean
gap0_cplex 51 0.000395 0.000940 0.000132
gap0_gurobi 51 0.000295 0.000777 0.000109

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

T-value P-value
-1.25 0.218

T-value P-value
1.73 0.090

5.2 Comparison of CPLEX and Gurobi - Case 1

Table 9 summarizes the results from the paired t-test to compare the time (or gap) of CPLEX to the counterpart
of Gurobi in Case 1. At the significance level of 0.01, the test results indicate that the time (or gap) of CPLEX is not
statistically different from the time (or gap) of Gurobi, since its p-value of 0.323 (or 0.076) is considerably greater than
0.01.

Table 9. Summary of paired t-test - Case 1

Time Gap

Descriptive Statistics
Sample N Mean StDev SE Mean
time1_cplex 51 107.7 145.7 20.4
time1_gurobi 51 115.4 172.3 24.1

Descriptive Statistics
Sample N Mean StDev SE Mean
gap1_cplex 51 0.000600 0.001295 0.000181
gap1_gurobi 51 0.000446 0.001019 0.000143

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

T-value P-value
-1.00 0.323

T-value P-value
1.81 0.076

5.3 Comparison of CPLEX and Gurobi - Case 2

Lastly, Table 10 summarizes the results from the paired t-test to compare the time (or gap) of CPLEX to the
counterpart of Gurobi in Case 2. At the significance level of 0.01, we cannot find a significant time (or gap) difference
between CPLEX and Gurobi since its p-value of 0.013 (or 0.103) is greater than 0.01.

Table 10. Summary of paired t-test - Case 2

Time Gap

Descriptive Statistics
Sample N Mean StDev SE Mean
time2_cplex 51 85.4 154.0 21.6
time2_gurobi 51 62.5 132.8 18.6

Descriptive Statistics
Sample N Mean StDev SE Mean
gap2_cplex 51 0.000847 0.001026 0.000144
gap2_gurobi 51 0.000734 0.000795 0.000111

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

Test
Null hypothesis H0: µ_difference = 0
Alternative hypothesis H1: µ_difference ≠ 0

T-value P-value
2.59 0.013

T-value P-value
1.66 0.103

Research Reports on Computer Science Volume 1 Issue 1|2022| 33

To sum up, no significant difference in time or performance (gap) between CPLEX and Gurobi is found in all three
cases.

6. Summary and future work
Some algorithms developed to solve NP-hard combinatorial optimization problems make use of commercial integer

programming software to solve small or moderate-sized subproblems. On the other hand, for decades OR practitioners
have generated feasible solutions to industrial applications of COP by executing commercial integer programming
software for long execution times. In this article, a procedure that iteratively uses commercial integer programming
software with no algorithm-specific code required is documented. This procedure called the SSIT matheuristic has
been empirically shown, using 51 GAP from the literature, to quickly generate solutions that are guaranteed to be very
close to the optimums. This multi-pass matheuristic is used in conjunction with an integer programming software (both
CPLEX and Gurobi were tested) package and employs a sequence of increasing tolerances that is used with the integer
programming software. If a goal bound on the solution is not achieved in a user-defined time interval, the best solution
found at one tolerance is then input as a starting solution for the next looser tolerance.

Regardless of which software package (Gurobi or CPLEX) was used or which SSIT scenario was used (two were
tested), this methodology was able, on average, for the 51 GAP instances, to generate solutions guaranteed to be within
0.1% of the optimums in under two minutes execution time on a standard PC. OR practitioners who implement SSIT in
an industrial application that is executed routinely, have the added advantage that the performance of their application
will continue to “automatically” improve as new versions of the commercial software are implemented.

In addition to SSIT finding bounded solutions quickly, its use of general-purpose integer programming software is
a significant benefit to OR practitioners. Specifically, it allows OR practitioners to quickly develop SSIT models using
default software parameter values and templates with no need for problem-specific algorithms. Based on the particular
application, the user has the flexibility to set the number of tolerances as well as their values. Additionally, the user
determines the maximum execution time for each tolerance.

The SSIT matheuristic is an effective alternative for OR practitioners to generate GAP solutions in an industrial
setting. This article demonstrates that the SSIT matheuristic is able to generate guaranteed bounded solutions (on
average, within 0.1% of the optimum) for 51 GAP test instances in only about 10% of the running time for executing
CPLEX or Gurobi with the max time of 3600 seconds at a tolerance of 0.0001. Furthermore, statistically, there was no
significant difference between CPLEX and Gurobi when solving these 51 GAP instances.

Finally, since the SSIT matheuristic is a general purpose strategy for solving combinatorial optimization problems,
the authors plan to test the performance of SSIT on solving other difficult-to-solve combinatorial optimization problems
using different commercial integer programming software packages.

Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References
[1]	 Oncan T. A Survey of the Generalized Assignment Problem and its Applications. INFOR. 2007; 45(3): 123-141.

Available from: doi: 10.3138/infor.45.3.123.
[2]	 Posta M, Ferland JA. An exact method with variable fixing for the generalized assignment problem. Computational

Optimization Applications. 2012; 52: 629-644. Available from: doi: 10.1007/s10589-011-9432-0.
[3]	 McNally B. A Simple sequential increasing tolerance matheuristic that generates bounded solutions for

combinatorial optimization problems. Master’s Thesis. Kutztown University of Pennsylvania; 2021.

Research Reports on Computer Science 34 | Francis J. Vasko, et al.

[4]	 Woodcock AJ, Wilson JM. A hybrid tabu search/branch & bound approach to solving the generalized assignment
problem. European Journal of Operational research. 2010; 207(2): 566-578. Available from: doi: 10.1016/
j.ejor.2010.05.007.

[5]	 Munapo E, Lesaona M, Nyamugure P. A transportation branch and bound algorithm for solving the generalized
assignment problem. International Journal of System Assurance Engineering and Management. 2015; 6: 217-223.
Available from: doi: 10.1007/s13198 015 03439.

[6]	 Sadykov R, Vanderbeck F, Pessoa A, Uchoa E. Column generation based heuristic for the generalized assignment
problem. XLVII Simposio Brasileiro de pesquisa Operacional. Port de Galinhas, Brazil; 2015. p.3624-3631.

[7]	 Sadykov R, Vanderbeck F, Pessoa A, Tahiri I, Uchoa E. Primal heuristics for branch-and-price: the assets of diving
methods. INFORMS Journal on Computing. 2019; 31(2): 251-267. Available from: doi: 10.1287/ijoc.2018.0822.

[8]	 Bando KA, Kawasaki RB. Stability properties of the core in a generalized assignment problem. Games and
Economic Behavior. 2021; 130: 211-223. Available from: doi: 10.2139/ssrn.3782247.

[9]	 Chu PC, Beasley JE. A genetic algorithm for the generalized assignment problem. Computers and Operations
Research. 1997; 24(1): 17-23. Available from: doi: 10.1016/S0305-0548(96)00032-9.

[10]	Ahmed ZH. Performance analysis of hybrid genetic algorithms for the generalized assignment problem.
International Journal of Computer Science and network Security. 2019; 19(9): 216-222. Available from: http://
paper.ijcsns.org/07_book/201909/20190925.pdf [Accessed 25th October 2021].

[11]	Zhi-Bin H, Guang-Tao F, Dan-Yang D, Chen X, Zhe-Lun D, Zhi-Tao D. Novel parallel hybrid genetic algorithms
on the GPU for the generalized assignment problem. The Journal of Supercomputing. 2021: 1-24. Available from:
doi: 10.1007/s11227-021-03882-6.

[12]	Baykasoglu A, Ozbaku L, Tapkan P. Artificial Bee colony algorithm and its application to generalized assignment
problem. In: Chan FTS, Tiwari MK (eds.) Swarm Intelligence: Focus on Ant and Particle Swarm Optimization.
Vienna, Austria: I-Tech Education and Publishing; 2007. p.113-144.

[13]	Yagiura M, Ibaraki T, Glover F. A path relinking approach with ejection chains for the generalized assignment
problem. European Journal of Operational Research. 2006; 169(2): 548-569. Available from: doi: 10.1016/
j.ejor.2004.08.015.

[14]	Kutner M, Nachtsheim CJ, Neter J, Li W. Applied Linear Statistical Models (5th edition). Burr Ridge, IL: McGraw
Hill; 2013.

	_ENREF_1

