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Abstract: Semi-supervised learning i.e., learning from a large number of unlabelled data and exploiting a small 
percentage of labelled data has attracted centralised attention in recent years. Semi-supervised problem is handled 
mainly using graph based Laplacian and Hessian regularisation methods. However, neither the Laplacian method 
which leads to poor generalisation nor the Hessian energy can properly forecast the data points beyond the range of the 
domain. Thus, in this paper, the Laplacian-Hessian semi-supervised method is proposed, which can both predict the 
data points and enhance the stability of Hessian regulariser. In this paper, we propose a Laplacian-Hessian Multi-label 
Minimax Probability Machine, which is Multi-manifold regularisation framework. The proposed classifier requires 
mean and covariance information; therefore, assumptions related to the class conditional distributions are not required; 
rather, a upper bound on the misclassification probability of future data is obtained explicitly. Furthermore, the proposed 
model can effectively utilise the geometric information via a combination of Hessian-Laplacian manifold regularisation. 
We also show that the proposed method can be kernelised on the basis of a theorem similar to the representer theorem 
for handling non-linear cases. Extensive experimental comparisons of our proposed method with related multi-label 
algorithms on well known multi-label datasets demonstrate the validity and comparable performance of our proposed 
approach. 

Keywords: multi-label semi-supervised classification, Hessian regularisation, Minimax Probability Machine, weighted 
least squares

1. Introduction
Multi-label classification is a supervised learning scenario wherein each sample belongs to more than one labels 

simultaneously. Multi-label classification is being used in many fields such as bioinformatics [1], protein function 
prediction, recommender systems, sentiment classification of microblogs [2], web mining [3], information retrieval [4], 
etc.

Acquiring labelled data in real life learning scenarios is often a challenging task, either because it is time 
consuming or too expensive to obtain, while unlabelled data is abundant. This asymmetry is amplifying in multi-label 
learning scenario when compared with single label case due to complex labelling process. Thus, it is important to 
consider semi-supervised methods for multi-label learning wherein both labelled and unlabelled data are considered for 
training, thus can achieve better results.
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The complexity of a classification problem has grown from Binary classification with | m | = 2 (m is the number of 
class/labels) and Multi-class classification where | m | > 2 in which each sample can be associated with only one class 
or label; to Multi-label Learning wherein each sample is associated with more than one relevant label and hence is 
much more complicated than the first two. Blanco et al. [5] in their paper showed that multi-label classification becomes 
difficult as label density increases.

There are many semi-supervised learning (SSL) techniques like Gaussian mixture models, self-training (where 
first a supervised classifier is trained and then the labels of unlabelled training data are predicted and then the classifier 
is trained again considering the predicted labels), co-training, (which assumes that each example is described using two 
different feature sets that provide different, complementary information about the instance), graph based methods etc. 
Here, we intend to use a graph based manifold regularisation for semi-supervised setting.

In order to effectively utilise the unlabelled data, we propose a semi-supervised Minimax Probability Machine 
(MPM) based approach termed as Semi-Supervised Learning Multi-label Minimax Probability Machine (MLMPM-SSL). 
We first develop a semi-supervised version of MPM classifier based on Hessian-Laplacian regularisation to effectively 
utilise geometry of data on the manifold, then show its efficacy and application in Amazon rainforest satellite images. 

Let a set of N training instances X = {x1, x2, …, xN } each in a n-dimensional space, i.e., xi ∈ ℝn, i = 1, 2, …, N 
be associated with m class labels, Y  = { y1, y2, …, ym}. Thus, each sample xi can take one or more labels from the 
m different classes c1, …, cm with its corresponding label vector as yi = Yi. determines its membership to each of 
these classes. Here, yi ∈ {1, 0, -1}, meaning the label annotations of sample i can be relevant, missing or irrelevant 
respectively. The task of semi-supervised multi-label classification is to learn a model utilising both labelled and 
unlabelled data and assign the proper class label to a test instance.

Recent studies show that the points lie on a manifold space which in turn can be reduced to a low dimensional 
manifold by locally linear embedding [6, 7] Laplacian eigenmaps, Hessian eigenmaps, etc. A basic assumption is 
that the sub-manifolds within a manifold are linear and these sub-manifolds can be patched together so as to form a 
linear manifold also preserving the neighbourhood structure (i.e., local structure) in the graph. Manifold regularisation 
framework is frequently used for semi-supervised learning which exploits the geometry of the given data on the 
manifold.

Laplacian regularisation is a popular manifold regularisation based SSL algorithm which approximates the 
manifold by using graph Laplacian. Another approach that is gaining popularity is Hessian regularisation, which 
prefers functions whose values vary linearly with respect to geodesic distance. Another recent advancement in manifold 
learning is the p-Laplacian which acts as a nonlinear generalisation of the standard graph Laplacian. Although p-Laplacian 
is shown to be effective, yet it is severely limited by its high computational cost to estimate a p-Laplacian.

2. Related work 
2.1 Minimax Probability Machine (MPM)

The MPM is a state-of-the-art binary classification algorithm, proposed by Lanckriet et al. [8], and has attracted 
a lot of researchers over the recent years. Some examples are twin minimax probability extreme learning machine 
[9], twin minimax probability regression [10], structural minimax probability [11], etc. MPM is a generative classifier 
which exploits statistical information inherent in the data. On the basis of first order and second order moment not only 
it classifies the data points, but also it aims to maximize the lower bound of accuracy (τ) in the worst case scenario. 
Unlike other generative classification algorithms, it doesn’t require any class distributional assumptions. In case of 
unavailability of exact values, estimates of means and covariance can also be used.

The central idea for MPM comes from the theorem given by Isii [12], as extended in work by Bertsimas and 
Sethuraman [13]:
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here, d is the Mahalanobis distance [14], S is a convex set, z̄ is the mean of class z, zΣ  is the covariance matrix (assumed 
to be positive definite for simplicity) of class z.

The Mahalanobis distance is the distance of a sample from the centroid of class, divided by the second order 
moment of the training data points.

The above theorem helps to find the belongingness of a sample to a class in terms of probability. For example, 
if the sample has a smaller Mahalanobis distance from the centroid, it would result in a higher probability for that 
particular class.

MPM finds a hyperplane, which can effectively separate the points of two classes with the highest probability with 
respect to all distributions. MPM also maximises a lower bound of probability membership value to each of the two 
classes which is represented by τ.

MPM shares analogy with Support Vector Machines (SVM). SVM tend to find a hyperplane that can separate the 
two classes with maximum margin, similarly, MPM tries to find a hyperplane such that the classes are separated with 
maximum probability and also provides a misclassification bound for the worst case, for more details please refer to [15]. 
In multi-label setting, this could help in focusing more attention on the labels which are difficult to identify as in the 
case of medical diagnosis of rare diseases.

 
2.2 Manifold regularisation

In SSL, we assume that there are N training samples, out of which l labelled samples can be written as  
{(xi, yi)}

l
i = l and u unlabelled samples are represented as {(xi)}

l + u
i = l +1. The labelled samples are generated from the 

probability distribution whereas the unlabelled samples are drawn from the marginal distribution. It is assumed that if 
two points p (point p is drawn from the labelled set of samples) and q (point q is drawn from unlabelled set of samples) 
are close to each other in intrinsic geometry of marginal distribution, then point p  and point q would have similar label. 
The marginal distribution is unknown in most applications, therefore an approximation based on labelled and unlabelled 
samples using graph Laplacian associated with the samples is used. Belkin et al. [16] showed that when the number 
of samples approaches infinity, the Laplace-Beltrami operator on the manifold can be approximated by discrete graph 
Laplacian. The optimisation problem given by Belkin et al. [16] is as follows:
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here, V is a loss function, || f ||2k = f TK f (K is a kernel function) is a smoothness term on f and || f ||2I is the key term 
to estimate the manifold, λ1 and λ2 are the parameters that balance the loss function and the regularisation terms.

Here, || f ||2I can be approximated as || f ||2I  
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Although Laplacian based regularisation is very popular because of its simplicity, yet it has its limitations. The 
null space of the graph based Laplacian along the manifold is a constant function that results in a poor performance 
especially under a low percentage of label data and it leads to overfitting the manifold. Hein et al. [17] in their paper 
proposed a Hessian based regularisation that generalises a smooth manifold which gives better results under a low 
percentage of labelled data. But the problem with Hessian regularisation is that when labelled data is not scarce (or is 
sufficiently available), Hessian gives sub-optimal results as the information from the labelled data is sufficient enough to 
estimate the manifold. In such a case, Laplacian approaches perform better than Hessian regularisation. Therefore, we 
strongly believe that a combination of these two approaches can better overcome the challenges faced by either. 

The main contribution of this paper is summed up as follows:
1.	 We propose a Laplacian-Hessian based Multi-manifold regulariser semi-supervised Multi-label Minimax 

Probability Machine (MLMPM-SSL) model that not only uses first order and second order moment of label 
data but also exploits the intrinsic geometry of the manifold using both Laplacian and Hessian regularisation to 

(2)
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supplement learning.
2.	 Since the resulting optimisation problems are Second Order Cone Programming (SOCP), we employ weighted 

least squares method to solve the SOCP problem.
3.	 Extensive experimental evaluations on well known multi-label datasets based on various evaluation metrics 

display the effectiveness and validity of our proposed model.

3. Proposed model
Consider a multi-label classification problem with m possible labels in the n-dimensional space. Suppose X Í ℝ be 

an input domain of instances and Y Í ℝ denotes an output domain of m class labels. Multi-label learning aims to obtain 
the decision function f (.) : X → 2Y, which does a mapping from a training set D = {(xi , yi), where i = 1, 2, …, N} to the 
power set of Y, xi ∈ X denotes an input instance with the associated label set yi Í Y. Thus, yiv represents the relationship 
of xi pattern with vth class and is defined as follows:

 1, if  belongs to th label
if  does not belong to th label
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,
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where 1 ≤ v ≤ m. Iv contains the samples belonging to the class with label v, Iv' contains the rest of the samples which do 
not belong to the class label v. For convenience, we denote xr for samples belonging to Iv and xj for samples belonging to 
Iv'.

We wish to find m hyperplanes, for each of the m labels, fv (z) : (aT
v z = bv), where av and bv are plane 

hyperparameters, which can effectively separate the points, represented by random variable ( , )
rr r xx x Σ  and  

( , )
jj j xx x Σ , with maximal probability with respect to all distributions.

Here, x̄r represents means and 
rxΣ  represents the covariance matrix of samples xr ∈ Iv. It also maximises τv which 

represents a lower bound of probability membership. For vth hyperplane supervised MPM tends to solve
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With the help of mathematics discussed in Lanckriet et al. [8], aforementioned problem can further be simplified to
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. It can be seen that κv is directly related to τv, therefore we can maximize κv without considering 

τv. The upper bound and lower bound of bv in the above equation are monotonically and unboundedly decreasing and 
increasing function of κv respectively, therefore, we can eliminate bv at the optimum.
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For x̄r = x̄j, κv would be 0, τv would also be 0 and a meaningful solution would not exist. Therefore, we assume  
x̄r ≠ x̄j, and set aT

v ( x̄r − x̄j,) = 1 without the loss of generality (for more detail, please refer to [18]). We get the following 
transformed SOCP, which is convex and bounded below
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The optimal b*v can be computed as b*v = ( )T T
v r v v vrxa x a aκ ∗∗ ∗ ∗− Σ  = ( )T T

v j v v vjxa x a aκ∗ ∗ ∗ ∗− Σ , where κ*v, a*v are 

the optimal values of κv and av respectively.
To utilise unlabelled information and taking motivation from Yoshiyama et al. [19], we derive Laplacian-Hessian-

MLMPM for SSL. We propose the formulation for linear and kernelised version on the basis of representer theorem and 
further, solve the optimisation using block coordinate descent.

Let 1{ } rN
r rx = , 1{ } jN

j jx =  be the labelled samples corresponding to index set Iv and Iv' respectively and 1{ } zN
i iz =  be the 

unlabelled samples which neither belongs to Iv nor Iv'. Here, fv(s) = aT
v s − bv, v = 1, …, m. Therefore, the optimisation 

problem in equation (6) can be rewritten as
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Here, 1 1 1{ } { } { }jr zNN N
r r j j i is x x z= = =∈ ∪ ∪ , and ( fv(si) − fv(sk))

2 = (aT
v si −aT

v sk)
2, λ is the regularisation parameter that 

balances the effectiveness of the third term. The first two terms have the same interpretation as equation (6), the third 
term is added to take care of the semi-supervised setting. It propagates label information from the labelled samples 
to the unlabelled samples, such that if two samples si, sk have similar output (i.e., ( fv(si) − fv(sk)) is small), then they 
should have similar label.

The above optimisation problem can be rewritten as
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Here, Z ∈ Rn×N is a matrix composed of all labelled and unlabelled samples, elements of Z are ordered as N =  
Nr + Nj + Nz and (LH)v is the combined Laplacian-Hessian regulariser and is defined as LH = FT(δ1 × L)F + FT(δ2 × H )F, 
which is linear combination of L and H. Let Mv = Z (LH )v Z T, then the final optimisation problem can be written as
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Also the expression of bv* can be rewritten as
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Here, 0 ≤ µ ≤ 1 and it balances the intrinsic geometry regularisation term, as mentioned in Yoshiyama et al. [19], it 
should be proportional to the number of class specific samples to the total number of samples, but for brevity, we take it 
to be 0.5.

3.1 Nonlinear MLMPM-SSL 

Working on the line of Lanckriet et al. [8] and Yoshiyama et al. [19] the non-linear MLMPM-SSL is briefly 
described in this section. Let ϕ be the mapping from the input space Rn to RF such that the nature of the data becomes 
linear in the higher dimensional space. The kernel matrix K(. , .) is defined as

 
K (x1, x2) = ϕ (x1)Tϕ (x2)

 where the data is mapped as
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The optimisation problem (equation (9)) can be rewritten in kernelised form as
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here, i ∈ {1, 2...Nr , Nr  + 1, ..., Nr  + Nj, ..., Nr  + Nj + Nz}, ti ∈ 1 2 1{ , ... , ,..., }
r jN Nx x x x x , Nr(Nj) represents the number of 

samples in class xr (class xj), respectively and Nz represents the number of unlabelled samples. The kernel matrix K is 

defined as K = 
r
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, here the first Nr(Nj) rows are represented as K r(K j) respectively. The Gram matrix P is given by
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Here, 
rxG  and 

jxG  represents the Gram matrix w.r.t. to class xr and xj, 1
rN , 1

jN  represents vector of ones of 

dimension Nr and Nj respectively. The upper bound misclassification probability is given by
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The class of testing data znew can be evaluated with the sign ( )( )new1
[ ] ( , )r jN N

v i i vi
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= ∗ ∗−∑  where 
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T
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v v v v v vx xG G K LH Kκ γ γ µ λγ γ∗ ∗ ∗ ∗− +  and  γ v*, κ v* are the optimal values of  γ v and κ v, respectively.

3.2 Computation of Hessian matrix

The Hessian matrix H can be computed by using the following steps.
1.	 For each training point xi, find its k nearest neighbours to define a neighbourhood matrix Ni.

2.	 Estimate the orthonormal coordinate system of the tangent space ( )
ixT Q  by performing a singular value 

decomposition of Xi = UDV T on Ni.
3.	 Perform Gram-Schimidt orthogonalisation process on the matrix Qi = [U1...Ud U11 U12...Udd] and resulting H i. 

The Frobenius norm of H i is H i H i
T .

4.	 Finally, construct Hessian by summing up H i
T H i over all samples.

3.3 Computation of Laplacian matrix

The Laplacian matrix L is computed using the following steps.
1.	 Get nearest neighbours of each sample.
2.	 Get must link and cannot link (side information) from labelled samples.
3.	 Compute edge weight matrix W , by using kernel similarity of nearest neighbours and must link edges, set 

cannot link weight to zero.
4.	 Finally, construct normalised Laplacian as L = I − D−1/2WD−1/2, D is the diagonal matrix containing sum of 

each row at diagonal entries.

3.4 Multi-manifold regularisation using Hessian and Laplacian regularisation

Multi-manifold regularisation can be effectively calculated as in [20-22].

LH = F T (δ1 × L)F + F T (δ2 × L)F

where L and H represent the Laplacian and Hessian regularisation respectively and optimal values of δ1 and δ2 are 
searched in [0.01, 0.1, 1].

4. Algorithm
The optimisation of MLMPM-SSL i.e, the problem defined in equation (9) can be solved by block coordinate 

descent [23] in a similar manner as in [18]. For that, we define av = av0 + Fu, where u ∈ Rn−1, 0 2

2

r j
v

r j

x x
a

x x

−
=

−
, F ∈ Rn × (n − 1) 

is an orthogonal matrix whose columns span the subspace of vectors orthogonal to ( r jx x− ). After eliminating the 
constraint from the equation, the aforementioned optimisation equation can be rewritten as an unconstrained SOCP.

(16)
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In the iterative procedure, we update βv, ηv, γ v and u alternatively. The pseudocode for algorithm is presented in 

Algorithm 1 [8, 18, 19].

Algorithm 1. Pseudocode for the iterative procedure for MLMPM-SSL 

Output: label of X test

For each label v
Get estimates

, , , , ( )
r jr j vx xx x LHΣ Σ

Compute 
2

0 2( ) /r j r ja x x x x← − − 

Let the columns of F be orthogonal to ( )r jx x−

, , ( )
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T T T
vx xS F F H F F M F LH Fλ← Σ ← Σ ←

 0 0 0, , ( )
r j

T T T
v v v vx xs F a h F a m F LH aλ← Σ ← Σ ←

Initialise βv1 = 1, ηv1 = 1, γv1 = 1

Repeat
/   /   /   LS vk vk vkM S H M Iβ η γ δ← + + +

( ) /   /   /LS vk vk vkb s h mβ η γ← − + +

solve MLSuk = bLS w.r.t. uk

0   vk v ka a Fu← +

 1 1 1    ,    ,    
r j

T T T
vk vk vk vk vk vk vk vk vkx xa a a a a Maβ η γ λ+ + +Σ Σ← ← ←

  1vk vk← +
Stop when ( βvk + ηvk + γvk ) is small or maximum iteration is reached.
 
Assign

v vka a←

)1/    (v vk vk vkκ β η γ← + +

1
2

T
v v r v vk vkb a x κ β γ ← − + 

 

Report optimal parameter a*v, b*v which are used to predict the label of testing patterns X test.
2

21 1
m v
v

v

κ
τ

κ=
=

+∑   

end For
Outlabel = sign( X test ⁎ a*1 − b*1), sign(X test ⁎ a*2 − b*2), …, sign(X test ⁎ a*m − b*m) 

(17)
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5. Experiments
The experiments are performed on well-known multi-label datasets using 10-fold cross-validation in MATLAB 

version 9.4 under Microsoft Windows environment on a machine with 3.40 GHz CPU and 16 GB RAM. For each fold 
training data, we randomly hide some percent of the labels of the training samples so as to adapt to semi-supervised 
learning scenario. We used the following hyperparameter settings for comparison of our proposed model with related 
algorithms: For all algorithms, where required we searched best value of k-nearest neighbour in [2, 4, ..., 10], kernel 
parameter σ was searched in {24, ..., 2−4}. The hyperparameters were tuned corresponding to the best accuracy on the 
labelled training set.

Estimating missing labels: We fix 20% samples, i.e. 10% positive and 10% negative for each label, but by 
doing so a small fraction of missing label samples are created. We complete such missing labels by estimation of their 
likelihood by the following:

First, we calculate label correlation matrix L (L ∈ R m × m ) from the available label information.

1 2
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1 2 1 2( , ) where 1 ,
2

c c

c

Y Y s
L c c c c m

Y s

∩ +
= ≤ ≤

+

and 
1cY  set of labelled instances annotated with label c1 and s is a small constant. Now, estimating the likelihood of 

missing label c for i th instance
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5.1 Compared algorithms

We have compared MLMPM with popular plane based classifiers along with algorithms which considers label  
co-occurency matrix while training along with some popular multi-label algorithms.

1.	 MLMPM-SSL (Proposed): Kernelised MLMPM-SSL model, Gaussian kernel is used. The hyperparameters 
were tuned corresponding to the best accuracy on the training set. Kernel parameter σ was searched in {24, ..., 
2−4}. We search the optimal number of nearest neighbour in [2, 4, 6, 8].

2.	 MLTSVM [24]: Multi-label Twin Support Vector Machines (MLTSVM) using rbf kernel. MLTSVM is an 
extension of twin support vector machines to multi-label learning. It finds several non-parallel hyperplanes 
to infer multi-label information embedded in the data. The parameters c1 and c2 are taken to be unity. Kernel 
parameter σ for MLTSVM was searched in {24, ..., 2−4}.

3.	 MLSVM(K): Kernelised Multi-label Support Vector Machines (fitcsvm [25]). MLSVM is another plane based 
classifier, extension of SVM to multi-label learning, which aims to construct a plane so as to separate the 
classes with maximum margin.

4.	 MLKNN [26]: Multi-label lazy learning approach using k-nearest neighbours to infer multi-label information 
from the data. It is not a plane based classifier which works on the underlying principle of maximum apriori. 
We search the optimal number of nearest neighbour in [2, 4, 6, 8] and set smoothness value as 1.

5.	 TRAM [27]: i.e., a transductive multi-label classification algorithm via label set propagation. We implement 
TRAM in a supervised scenario and take the default setting for k as 10.

6.	 CPNL [28]: Cost-sensitive multi-label learning with positive and negative label pairwise correlations. An 
approach to deal with imbalance multi-label classification. We find the parameters λ1, λ2, λ3 in {10−4, ..., 102} on 

(18)

(19)
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training data. Kernel parameter σ for CPNL was searched in {24, ..., 2−4}.
7.	 C2AE [29]: Canonical Correlated AutoEncoder (C2AE). This model integrates canonical correlation and 

autoencoders using deep learning architecture to exploit label dependencies in multi-label learning. We follow 
the parameter settings as described in the paper and tune α in {0.1, 0.2, ..., 2, ..., 10}. The number of epoch is 
set to 50.

5.2 Computational complexity

The main optimisation of MPM is a second order cone programming problem which has a complexity of O(N 3) 
in the worst case. Considering the computation for mean, variance, and geometric information, the total complexity of 
MLMPM-SSL is O(mN 3 + mN 2 + mN 2) which is approximately O(mN 3). Here, m is the number of labels and N is the 
total number of samples.

5.3 Datasets

The characteristics of multi-label datasets used are described in Table 1. Cardinality measures the average number 
of labels associated with each instance, and density is defined as cardinality divided by the number of labels.

We selected medium size datasets (large datasets have not been used because of large computation time and lack 
of resources in the COVID-19 lockdown), although the model can be extended to large dataset easily, out of these 
Emotions, Image, Yeast and Scene datasets have numerical features, PlantGO, GnegativeGO have binary features. Also, 
we normalise each dataset except PlantGO, GnegativeGO as they have binary features. We have carefully selected these 
datasets so as to check the performance of the proposed algorithm in diverse conditions.

Table 1. Datasets used in the experiment

Dataset Instance Features Label Cardinality Density Domain

Emotions [30] 593 72 6 1.869 0.311 Music

Image [30] 2000 294 5 1.240 0.247 Image

Scene [30] 2407 294 6 1.074 0.179 Image

Yeast [30] 2417 103 14 4.237 0.303 Biology

PlantGO [31] 978 3091 12 1.079 0.090 Biology

GnegativeGO [31] 1392 1717 8 1.046 0.131 Biology

TMC [31] 2000 500 22 2.158 0.098 Text

5.4 Evaluation metrics

Given a test dataset 1{ , } tN
s i i iT x y ==  where yi ∈ {−1, 1}m. Let Nt , m, yi , ˆiy  denote, respectively, the number of test 

data, the number of labels, the set of labels relevant to the i th instance and the set of labels that are irrelevant to it. In 
addition, the function f y(x ) is a real-valued function ( f : X × Y → ℝ) that returns the confidence of being proper label 
of x and rank f (x, y) returns the rank of y in Y based on the descending order induced from  fy(x ) and h(⸱) be the learned 
multi-label classifier.

We have used the following evaluation criteria to compare the performance of different algorithms.
1.	 Hamming loss (HL): This criterion indicates the fraction of labels that are incorrectly predicted to the total 

number of labels.

1 1

1HL [ ( ) ]tN m
j i iji j

t

h x y
N m = =

= ≠
× ∑ ∑ (20)
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2.	 Exact match (EM): This metric evaluates the fraction of examples for which the predicted label set is same as 
the ground truth label set.

1

1EM [ ( ) ]tN
i ii

t

h x y
N =

= =∑

3.	 F1-example (F1): This metric evaluates the harmonic mean of precision and recall averaged for all instances 
[32].
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Here, ˆ j

iy  is the predicted value and j
iy  is the original value as in ground truth label. MicroF1 computes across 

each label and then averages them, macroF1 computes across each sample and then averages them.
4.	 Average precision (AP): Average precision evaluates the average fraction of relevant labels ranked higher 

than a particular label y ∈ yi.
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5.5 Results and statistical analysis

Table 2 reports the results of the proposed model at different labelled percentages of training data. Best results are 
highlighted in bold. Table 3 reports the average results (mean ± standard deviation) of the comparing algorithms versus 
the proposed model at 100 percent labelled training data. As mentioned in various papers, Hessian which is a second 
order differential operator gives the best performance under low percentage of labelled data whereas Laplacian which is 
a first order differential overfits the data and therefore performs poorly under low label data. Experimentation on various 
datasets suggest that although Laplacian can give better training accuracy but generally it underperforms in testing 
phase. Due to brevity, the experimental details are avoided here. A general observation is that when label information is 
abundant Laplacian and Hessian based manifold regularisation give nearly the same results and using a multi-manifold 
regularisation generally yields the best results. The results shown confirm the same.

The proposed model has superior performance on Emotions, Image, GnegativeGO, Scene and PlantGO datasets. 
This clearly indicates MLMPM-SSL model is able to effectively utilise the geometric and statistical information inherent 
in the multi-label datasets. The proposed model has competitive performance on Yeast dataset where MLSVM due to 
its discriminating nature along with kernelisation is able to achieve superior results. CPNL has average performance 
on the datasets and it shows to be less effective for binary feature datasets. CPNL’s performance is restricted because 
of its sensitivity to its parameters and also due to inaccurate modelling of label correlations. MLTSVM adopts twin 

support vector machines to multi-label setting, authors set the threshold for each proximal hyperplane to 1min
vw

 
 
  

. 

This causes the MLTSVM to have improper prediction on rare labels compared with the proposed model and thus 

(22)

(23)

(24)

(21)
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gets a lesser exact match and macroF1. MLKNN achieves lesser results on GnegativeGo and PlantGo due to high 
dimensionality of these datasets. TRAM gets comparable results with the proposed model except for macroF1 due 
to improper prediction on rare labels. A general trend is observed that the proposed model’s performance increases 
as the percentage of label data increases. Also, when the label data is 20 percent, the model gradually approaches 
the worst case performance but never falls below worst case accuracy obtained explicitly on the training data. The 
Hessian-Laplacian multi-manifold regularisation enables the proposed model to effectively capture the information 
from unlabelled samples on the underlying manifold. Overall, the MLMPM-SSL model has good performance on real 
world datasets and exhibits superior performance in most cases. Also, the worst case accuracy (τ) as predicted by the 
MLMPM-SSL model is highly accurate as the Hamming loss obtained on testing data is always lesser than 1 − τ (worst 
case Hamming loss) obtained in the training phase.

Table 2(A). Results of MLMPM-SSL on Emotions, Image, GnegativeGO and Scene dataset

Label data 20% 30% 40% 50% 60% 70% 80% 90% 100%

Emotions
Exact match 

(↑) 0.209±0.013 0.229±0.017 0.234±0.018 0.251±0.0144 0.254±0.021 0.268±0.015 0.298±0.022 0.303±0.019 0.322±0.022
Hamming 

loss (↓) 0.270±0.007 0.235±0.009 0.227±0.009 0.213±0.007 0.207±0.008 0.206±0.008 0.201±0.008 0.198±0.008 0.185±0.006

MacroF1 (↑) 0.624±0.010 0.617±0.016 0.605±0.016 0.626±0.012 0.627±0.016 0.634±0.015 0.647±0.016 0.649±0.015 0.678±0.014

MicroF1 (↑) 0.638±0.010 0.634±0.017 0.628±0.017 0.648±0.013 0.650±0.014 0.656±0.014 0.665±0.014 0.668±0.014 0.693±0.012
Avg precision 

(↑) 0.706±0.010 0.713±0.013 0.721±0.012 0.742±0.010 0.742±0.010 0.741±0.012 0.748±0.011 0.757±0.008 0.774±0.009
Worst case 
accuracy 0.660 0.662 0.630 0.621 0.596 0.588 0.574 0.573 0.562

Image
Exact match 

(↑) 0.114±0.007 0.17±0.008 0.226±0.009 0.283±0.01 0.313±0.008 0.335±0.006 0.413±0.013 0.443±0.008 0.468±0.008
Hamming 

loss (↓) 0.413±0.005 0.348±0.004 0.296±0.003 0.242±0.004 0.223±0.002 0.208±0.002 0.18±0.003 0.17±0.003 0.16±0.003

MacroF1 (↑) 0.485±0.006 0.51±0.006 0.525±0.005 0.538±0.006 0.555±0.004 0.576±0.006 0.616±0.008 0.638±0.006 0.656±0.008

MicroF1 (↑) 0.487±0.006 0.51±0.006 0.524±0.006 0.54±0.006 0.555±0.004 0.575±0.005 0.612±0.008 0.635±0.007 0.655±0.008
Avg precision 

(↑) 0.643±0.007 0.688±0.009 0.712±0.008 0.724±0.007 0.732±0.007 0.745±0.006 0.756±0.009 0.755±0.006 0.77±0.007
Worst case 
accuracy 0.632 0.626 0.635 0.631 0.628 0.617 0.62 0.624 0.655

GnegativeGO
Exact match 

(↑) 0.504±0.009 0.539±0.011 0.752±0.017 0.872±0.011 0.909±0.006 0.908±0.007 0.902±0.006 0.909±0.005 0.915±0.006
Hamming 

loss (↓) 0.118±0.003 0.088±0.003 0.040±0.002 0.019±0.001 0.015±0.001 0.015±0.001 0.016±0.001 0.014±0.001 0.014±0.001

MacroF1 (↑) 0.532±0.012 0.637±0.024 0.733±0.027 0.770±0.027 0.780±0.025 0.780±0.025 0.778±0.024 0.782±0.023 0.789±0.022

MicroF1 (↑) 0.682±0.006 0.742±0.008 0.860±0.008 0.927±0.005 0.940±0.004 0.940±0.004 0.937±0.003 0.941±0.003 0.945±0.004
Avg precision 

(↑) 0.826±0.006 0.895±0.009 0.921±0.006 0.953±0.003 0.956±0.005 0.956±0.005 0.954±0.005 0.957±0.004 0.958±0.004
Worst case 
accuracy 0.786 0.762 0.752 0.733 0.691 0.686 0.694 0.677 0.666

Scene
Exact match 

(↑) 0.212±0.007 0.417±0.008 0.507±0.011 0.621±0.009 0.626±0.005 0.628±0.012 0.643±0.009 0.660±0.007 0.664±0.006
Hamming 

loss (↓) 0.255±0.003 0.160±0.003 0.112±0.002 0.088±0.001 0.083±0.001 0.083±0.002 0.079±0.002 0.076±0.001 0.074±0.001

MacroF1 (↑) 0.572±0.004 0.680±0.006 0.734±0.005 0.753±0.005 0.758±0.005 0.763±0.006 0.769±0.007 0.780±0.006 0.787±0.004

MicroF1 (↑) 0.557±0.004 0.654±0.006 0.714±0.006 0.744±0.005 0.751±0.004 0.755±0.006 0.763±0.007 0.774±0.005 0.777±0.004
Avg Precision 

(↑) 0.71±0.004 0.780±0.004 0.807±0.006 0.824±0.006 0.828±0.003 0.831±0.004 0.841±0.006 0.847±0.005 0.841±0.005
Worst case 
accuracy 0.629 0.612 0.613 0.605 0.606 0.605 0.584 0.583 0.588
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Table 2(B). Results of MLMPM-SSL on Yeast and PlantGO dataset

Label data 20% 30% 40% 50% 60% 70% 80% 90% 100%

Yeast 

Exact match 
(↑) 0.070±0.002 0.102±0.004 0.12±0.004 0.140±0.007 0.151±0.004 0.158±0.006 0.168±0.006 0.168±0.005 0.167±0.006

Hamming 
loss (↓) 0.342±0.003 0.273±0.001 0.247±0.001 0.232±0.001 0.227±0.001 0.219±0.001 0.215±0.002 0.213±0.001 0.208±0.001

MacroF1 (↑) 0.442±0.004 0.453±0.005 0.452±0.007 0.452±0.005 0.446±0.005 0.449±0.005 0.45±0.007 0.45±0.007 0.45±0.006

MicroF1 (↑) 0.524±0.004 0.574±0.003 0.6±0.004 0.613±0.002 0.617±0.003 0.629±0.002 0.633±0.003 0.633±0.003 0.640±0.002
Avg precision 

(↑) 0.575±0.005 0.633±0.004 0.656±0.004 0.667±0.003 0.672±0.004 0.679±0.004 0.683±0.004 0.684±0.005 0.687±0.003
Worst case 
accuracy 0.604 0.593 0.599 0.583 0.567 0.558 0.556 0.57 0.564

PlantGO

Exact match 
(↑) 0.392±0.022 0.515±0.014 0.597±0.013 0.628±0.013 0.626±0.015 0.644±0.017 0.620±0.017 0.625±0.015 0.639±0.017

Hamming 
loss (↓) 0.076±0.004 0.058±0.002 0.047±0.001 0.043±0.001 0.042±0.001 0.04±0.001 0.043±0.001 0.042±0.001 0.042±0.001

MacroF1 (↑) 0.619±0.012 0.662±0.014 0.675±0.015 0.657±0.016 0.649±0.014 0.656±0.015 0.622±0.014 0.610±0.015 0.606±0.015

MicroF1 (↑) 0.676±0.011 0.718±0.008 0.737±0.006 0.755±0.008 0.761±0.009 0.764±0.01 0.745±0.012 0.748±0.011 0.749±0.012
Avg precision 

(↑) 0.825±0.007 0.816±0.008 0.755±0.006 0.777±0.008 0.782±0.01 0.780±0.011 0.769±0.012 0.772±0.012 0.772±0.01
Worst case 
accuracy 0.666 0.668 0.656 0.653 0.645 0.638 0.64 0.637 0.640

Table 3(A). Results on Emotion, Image and Scene

Evaluation metric MLMPM-SSL MLTSVM MLSVM(K) MLKNN TRAM CPNL C2AE

Emotions, τ = 0.562

Time 0.370 ± 0.025 0.194 ± 0.002 0.086 ± 0.001 0.0559 ± 0.0002 0.0425 ± 0.0001 0.3801 ± 0.0138 7.660±0.019

Exact match(↑) 0.322±0.022 0.285±0.023 0.298±0.023 0.270±0.026 0.261±0.0177 0.290±0.018 0.020±0.010

Hamming loss(↓) 0.185±0.006 0.195±0.009 0.186±0.007 0.201±0.009 0.217±0.008 0.194±0.007 0.515±0.011

MacroF1(↑) 0.678±0.014 0.674±0.019 0.633±0.016 0.601±0.020 0.645±0.014 0.652±0.017 0.327±0.005

MicroF1(↑) 0.693±0.012 0.694±0.017 0.663±0.015 0.642±0.019 0.656±0.014 0.680±0.015 0.447±0.010

Avg precision(↑) 0.774±0.009 0.761±0.016 0.752±0.014 0.739±0.013 0.748±0.012 0.754±0.015 0.537±0.016

Image, τ = 0.655

Time 6.625 ± 0.319 8.671 ± 0.130 0.544 ± 0.0136 1.217 ± 0.002 0.9923 ± 0.0042 0.3582 ± 0.0689 26.918± 0.738

Exact match(↑) 0.468±0.008 0.311±0.028 0.346±0.020 0.356±0.026 0.461±0.019 0.308±0.026 0.187±0.014

Hamming loss(↓) 0.16±0.003 0.226±0.012 0.180±0.007 0.186±0.008 0.191±0.009 0.203±0.007 0.298±0.009

MacroF1(↑) 0.656±0.008 0.610±0.019 0.483±0.019 0.502±0.023 0.581±0.017 0.479±0.031 0.401±0.017

MicroF1(↑) 0.655±0.008 0.613±0.02 0.501±0.020 0.513±0.023 0.583±0.018 0.495±0.031 0.455±0.016

Avg precision(↑) 0.77±0.007 0.741±0.017 0.666±0.010 0.685±0.011 0.734±0.012 0.654±0.021 0.623±0.014

Scene, τ = 0.588

Time 13.908 ± 0.143 10.581 ± 0.057 0.559 ± 0.009 1.787 ± 0.008 1.417 ± 0.0017 13.8681 ± 0.0969 34.588±0.092

Exact match(↑) 0.664±0.006 0.546±0.011 0.636±0.013 0.633±0.009 0.697±0.006 0.388±0.012 0.371± 0.010

Hamming loss(↓) 0.074±0.001 0.105±0.003 0.075±0.003 0.085±0.002 0.091±0.002 0.146±0.003 0.137±0.003

MacroF1(↑) 0.787±0.004 0.769±0.006 0.759±0.010 0.742±0.007 0.741±0.006 0.649±0.007 0.561±0.007

MicroF1(↑) 0.777±0.004 0.746±0.007 0.757±0.010 0.740±0.007 0.736±0.005 0.644±0.006 0.572±0.007

Avg precision(↑) 0.841±0.005 0.820±0.006 0.823±0.006 0.819±0.005 0.831±0.003 0.753±0.008 0.683±0.009
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Table 3(B). Results on GnegativeGO,Yeast and PlantGO

Evaluation metric MLMPM-SSL MLTSVM MLSVM(K) MLKNN TRAM CPNL C2AE

GnegativeGO, τ = 0.666

Time 4.928 ± 0.171 5.746 ± 0.122 2.486 ± 0.022 7.365 ± 0.024 3.762 ± 0.008 3.777 ± 0.033 32.829±1.375

Exact match(↑) 0.915±0.006 0.846±0.012 0.900±0.006 0.887±0.007 0.902±0.006 0.382±0.008 0.648±0.017

Hamming loss(↓) 0.014±0.001 0.024±0.002 0.016±0.001 0.0196±0.001 0.019±0.001 0.155±0.002 0.053±0.002

MacroF1(↑) 0.789±0.022 0.580±0.004 0.755±0.019 0.727±0.020 0.708±0.017 0.071±0.001 0.540±0.015

MicroF1(↑) 0.945±0.004 0.910±0.006 0.934±0.005 0.922±0.005 0.925±0.004 0.391±0.01 0.790±0.011

Avg Precision(↑) 0.958±0.004 0.951±0.004 0.943±0.004 0.937±0.004 0.945±0.004 0.529±0.007 0.828±0.011

Yeast, τ = 0.564

Time 09.344 ± 0.514 28.638 ± 0.082 2.176 ± 0.021 0.989 ± 0.009 0.815 ± 0.001 13.954 ± 0.059 31.754±0.093

Exact match(↑) 0.167±0.006 0.138±0.005 0.195±0.007 0.180±0.006 0.153±0.005 0.143±0.007 0.124±0.006

Hamming loss(↓) 0.208±0.001 0.210±0.003 0.187±0.003 0.194±0.002 0.213±0.003 0.203±0.003 0.222±0.002

MacroF1(↑) 0.45±0.006 0.296±0.002 0.369±0.005 0.371±0.005 0.409±0.005 0.318±0.002 0.408±0.008

MicroF1(↑) 0.640±0.002 0.617±0.006 0.654±0.006 0.639±0.006 0.646±0.007 0.623±0.006 0.633±0.004

Avg Precision(↑) 0.687±0.003 0.663±0.005 0.682±0.005 0.670±0.005 0.693±0.007 0.662±0.005 0.680±0.004

PlantGO, τ = 0.640

Time 1.848 ± 0.099 5.152 ± 0.040 4.23 ± 0.029 5.115 ± 0.005 3.474 ± 0.011 1.650 ± 0.039 44.779 ± 0.061

Exact match(↑) 0.639±0.017 0.549±0.019 0.566±0.018 0.576±0.015 0.614±0.016 0.142±0.046 0.334±0.009

Hamming loss(↓) 0.042±0.001 0.066±0.002 0.046±0.002 0.052±0.001 0.060±0.002 0.153±0.015 0.074±0.002

MacroF1(↑) 0.606±0.015 0.248±0.004 0.449±0.020 0.468±0.019 0.503±0.017 0.056±0.006 0.163±0.010

MicroF1(↑) 0.749±0.012 0.648±0.012 0.696±0.015 0.685±0.010 0.65±0.013 0.289±0.015 0.450±0.013

Avg Precision(↑) 0.772±0.01 0.728±0.012 0.696±0.014 0.720±0.013 0.711±0.013 0.393±0.02 0.499±0.009

We select 2,000 random samples from TMC dataset and plot the results for Laplacian, Hessian and Laplacian-
Hessian MPM models. In Figures 1 to 5, the y-axis is the metric score and x-axis represents the percentage of labelled 
training data available. It can be seen that when label data percentage is high, Laplacian is able to achieve better results, 
meanwhile Hessian performs better under low percentage of labelled data. Using a combination of the two approaches, 
generally yields stable results.

Figure 1. Average precision scores on TMC dataset
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Figure 2. Exact match scores on TMC dataset

Figure 3. Hamming loss scores on TMC dataset

Figure 4. MacroF1 scores on TMC dataset
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Figure 5. MicroF1 scores on TMC dataset

6. Application to predict Amazon rainforest satellite images
The Amazon rainforest is home to rich and diverse flora and fauna, some of which are limited to the region only. 

The thick forest cover and richness of wildlife in the region has attracted a lot of wildlife researchers, enthusiasts, 
environmentalists etc. But in the past decades, the rising deforestation in the area has been a major concern for 
governments and like minded communities. Planet, a satellite imaging company, recently released a dataset of more than 
100,000 images from the Amazon basin and hosted a Kaggle competition involving labelling the atmosphere and ground 
features in the images [33]. The high-resolution Planet images enable identification of specific causes of deforestation 
and differentiation of legal and illegal human developments in the region.

The Amazon satellite images dataset is a multi-label dataset, has nearly 40,000 images in the training set and the 
rest in the testing set. The dataset has 17 labels which can be broadly categorised as follows.

1.	 Atmospheric labels: clear, partly cloudy, cloudy and hazy
2.	 Common labels: primary, water, habitation, agriculture, road, cultivation and bare ground
3.	 Rare labels: artisinal mine, blooming, blow down, conventional mine, selective logging and slash burn.
Manual labelling of these images is a cumbersome task which requires intense human efforts. Also, the manual task 

of image annotation may introduce human error. In many images, the labels are noisy. Therefore, we assume a semi-
supervised scenario and then apply our proposed model to effectively learn from labelled and unlabelled images.

6.1 Generation of features from images

Due to the limitations of our system during the COVID-19 lockdown, we select a subset of 3,000 sample images 
for testing the efficacy of the plane based classifiers. We choose the tiff format of images to construct the features 
for the images. The images have 4 colour bands corresponding to the CMYK (cyan, magenta, yellow and key/black) 
representation. The label cardinality of dataset is 2.87.

To generate features from image, we follow a similar approach as in [34]. We divide the image into smaller 64 
grids and report the colour moments, i.e. mean and standard deviation of each grid as features of that image. The 
number of features for each image are 64 × 2 × 4 which is 512. The process is illustrated in Figure 6.

6.2 Results and discussion on Amazon rainforest’s satellite dataset

We evaluate the Amazon rainforest’s satellite dataset on the proposed multi-label classifier MLMPM-SSL under 
label percentage varying from 20% to 100% with 10% interval, results which are reported in Table 4.

As it can be inferred from the results, the metrics show better performance when more label data is available. The 
MLMPM-SSL not only achieve good results when label data is spare but also provides a worst case accuracy which is 
desirable for large datasets and can provide valuable insights into future predictions.
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Figure 6. Feature generation from an image

Table 4. Results of MLMPM-SSL on Amazon rainforest’s satellite images dataset

Label data 20% 30% 40% 50% 60% 70% 80% 90% 100%

Exact match 
(↑) 0.165±0.009 0.207±0.003 0.182±0.013 0.228±0.011 0.262±0.013 0.276±0.009 0.288±0.007 0.309±0.004 0.329±0.003

Hamming 
loss (↓) 0.187±0.002 0.171±0.001 0.171±0.004 0.134±0.002 0.125±0.002 0.123±0.002 0.12±0.002 0.114±0.002 0.107±0.001

MacroF1 (↑) 0.287±0.003 0.275±0.005 0.263±0.005 0.262±0.006 0.275±0.007 0.286±0.006 0.306±0.004 0.318±0.005 0.333±0.006

MicroF1 (↑) 0.56±0.007 0.571±0.005 0.573±0.007 0.63±0.004 0.649±0.005 0.661±0.005 0.674±0.006 0.687±0.004 0.706±0.003

Avg precision 
(↑) 0.625±0.009 0.653±0.005 0.656±0.007 0.697±0.003 0.708±0.005 0.716±0.004 0.725±0.003 0.737±0.003 0.751±0.002

Worst case 
accuracy 0.801 0.825 0.818 0.778 0.742 0.721 0.705 0.698 0.696

7. Discussion and conclusions
In this paper, we have proposed MLMPM-SSL model to handle multi-label semi-supervised learning, wherein we 

effectively utilise the unlabelled samples along with labelled samples by a multi-manifold regularisation of Hessian-
Laplacian regularisation. Although our proposed model is effective at learning from semi-supervised setting in multi-
label learning yet exploiting label correlation still remains. Many similar models rely on self-training to predict the 
labels in training data and then consider label correlation, but this approach is highly inefficient when there is less 
label data and the self-training approach fails miserably. Also, if they achieve higher training accuracy, it does lead 
to overfitting and hence poor results on testing data. In our opinion, there is a need for an approach to mine label 
correlation directly from the feature space and being less dependent on the label data at the same time as adopted in 
Cheng et al. [35].  

For each channel, divide into smaller grids

CMYK colour channels

For each grid, calculate mean and standard deviation

Break the image into CMYK colour channels

Image

64 × 2 × 4

8 × 8 
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