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Abstract: A two-level implicit compact formulation with quasi-variable meshes is reported for solving three-dimensions 
second-order nonlinear parabolic partial differential equations. The new nineteen-point compact scheme exhibit fourth 
and second-order accuracy in space and time on a variable mesh steps and uniformly spaced mesh points. We have also 
developed an operator-splitting technique to implement the alternating direction implicit (ADI) scheme for computing 
the 3D advection-diffusion equation. Thomas algorithm computes each tri-diagonal matrix that arises from ADI steps in 
minimal computing time. The operator-splitting form is unconditionally stable. The improved accuracy is achieved at a 
lower cost of computation and storage because the spatial mesh parameters tune the mesh location according to solution 
values’ behavior. The new method is successfully applied to the Navier-Stokes equation, advection-diffusion equation, 
and Burger’s equation for the computational illustrations that corroborate the order, accuracies, and robustness of the 
new high-order implicit compact scheme. The main highlight of the present work lies in obtaining a fourth-order scheme 
on a quasi-variable mesh network, and its superiority over the comparable uniform meshes high-order compact scheme.

Keywords: compact scheme, ADI method, quasi-variable mesh network, advection-diffusion equation, Navier-Stokes 
equation, Burger’s equation, stability

1. Introduction
The necessity for understanding the partial differential equations in modeling the physical phenomenon has 

observed tremendous growth in mathematical theory and attracted physicists, engineers, and mathematicians. The three-
dimensional advection-diffusion equations (ADEs) are used to describe several circumstances such as convection-
diffusion, air pollution, fluid flow, heat exchange, image processing, and mass transfer. The heat conduction equation, 
Burger’s equation, air pollutant transport model, and Navier-Stokes equations are some of the essential mathematical 
models that appear in modeling ocean currents, airflow around a wing, blood flow, and design of power stations. The 
3D diffusion-advection model appears in river thermal pollution, transport in semiconductor devices, heat transfer in a 
draining film charge, fluid flow in porous media, contaminant dispersion in shallow water, and atmospheric pollutant 
transport [1, 2]. Advection-diffusion-reaction response model arrangements with time advancement in biological 
species or substances in a blowing medium, for example, air and water [3]. Many such mathematical models do not 
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possess analytic solutions; therefore, numerical analysis of multi-dimensional ADEs is of great interest to engineers 
and scientists. The available computational techniques lack optimal memory, efficiency, and numerical accuracy of 
discrete solution values. This is because the resulting nonlinear discrete equations are large enough and restrain the 
implementation to conventional computers due to limited computing time and inadequate memory storage. Therefore, 
developing stable, efficient, and accurate numerical schemes for determining approximating solution values of ADEs is 
vital. Researchers may have made an excellent effort to construct a high-order scheme due to computational efficiency 
and reasonable accuracy [4-6]. In recent years, compact finite-difference discretization has been delineated for linear 
time-dependent convection-diffusion equations in [7-11]. Karaa and Othman [12] described a two-level high-resolution 
difference method to obtain the numerical approximations of three-dimensional ADEs with mixed derivatives. Mohanty 
and Setia [13] described an off-step fourth-order method for time-dependent three-dimensional quasi-linear ADEs, and 
the proposed scheme applies to cylindrical and spherical polar coordinates. A three-dimensional micro heat transfer 
model is solved using the local one-dimensional method in [14]. Based on Pade-approximations, the high-order finite-
difference method combined with the unconditional stable alternating direction implicit (ADI) scheme is obtained for 
a three space dimensions reaction-diffusion model along with Neumann boundary data [15]. A single cell compact 
discretization of accuracy two and four in time and space, respectively, to the normal derivative appearing in three-
dimensional quasi-linear ADEs, was developed in [16]. The mathematical analysis and computational illustrations 
associated with a fractional form of ADE, Navier-Stokes equation, Burger-Huxley equation, and reaction-diffusion 
equation have been analyzed in [17-26]. 

Literature related to multi-dimension partial differential equations is mainly devoted to uniform mesh step-
sizes, and non-uniform meshes were given less attention. The straightforward implementation of finite-difference 
discretization produces approximate solution values using direct or iterative methods, and with a long run time, one can 
achieve almost exact solution values. The standard finite-difference approximations work well with smooth solutions 
but can give oscillatory or unbounded numerical results when perturbations are introduced [27, 28]. This is because 
truncation errors and discretization errors emanating from taking a finite number of computation steps to approximate 
are infinite. The local truncation errors in the discretization rely on the step-size of meshes and derivative of the variable. 
The presence of first-order spatial derivative (viscosity) in truncation error usually causes trouble and may destroy 
solutions [29]. Therefore, uniform meshes often yield a non-uniform distribution of errors. The implementation of non-
uniform meshes tackles such variations in the error. The smaller mesh step-size in the sub-domain where the derivative 
of the function value is enormous. Larger step size in the sub-domain where the value of function derivative is small and 
thus results in uniform distribution of discretization errors. In this way, we may have a uniform distribution of truncation 
errors over the integration domain and obtain a more precise resolution to a pre-assigned quantity of meshes. Some 
additional features emerged using non-uniform meshes in simulations [30, 31].

The beauty of high accuracy numerical schemes for simulation is fully recognized for the fundamental fluid 
flow. High-order finite-difference discretizations have low dispersion and require a significantly reduced number of 
mesh points to ensure tolerable levels of numerical error. Non-compact finite-difference discretization requires a wide 
number of computational stencils as the order of approximation increases. These large stencils are challenging to handle 
at the boundary where no data is available to perform differencing. Also, large stencils result in high bandwidth of 
matrix whose inversion is computationally costly. Therefore, the high-order finite-difference discretization on compact 
stencils solves such complications. Compact stands for the numerical scheme with minimal stencil width. Non-uniform 
meshes allow mesh points to be more refined in the sub-domain where stiff gradients are expected. Finite-difference 
discretization of partial order derivatives in the ADEs are essential to constitute a stable, accurate, and computationally 
proficient scheme with minimum numerical dissipation and dispersion. In the present work, we describe a high-order 
accurate implicit compact scheme to the mildly nonlinear time-dependent ADEs of the form 

                                         ( ) ( , , , , , , , , ),xx yy zz x y z tW W W G x y z t W W W W W+ + = ( , , , ) ,x y z t ∈Ω                                     (1)

where {( , , , ) : 0 , , 1,0 },x y z t x y z t TΩ = < < < < 0 1,<  ( , , , ),W W x y z t= / ,xW W x= ∂ ∂ 2 2/xxW W x= ∂ ∂ , etc. and 
associated initial and boundary values are assigned as

                                                                0( , , ,0) ( , , ),0 , , 1,W x y z K x y z x y z= ≤ ≤                                                             (2)
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The mathematical examination of an incredibly enormous class of time-dependent partial differential equations 
(PDEs) having nonlinear first-order spatial and temporal derivatives is vital due to the absence of a theoretical solution 
in general. The proposed discretization procedure yields finite linear algebraic systems having sparse matrix structures, 
and therefore, iterative methods are suitable. In Sections 2 and 3, we shall describe mesh topology, compact operators, 
and the formulation of a numerical scheme that falls within the scope of optimum accuracy. Section 4 describes an 
alternating direction iterative scheme as experimented with the 3D time-dependent convection-diffusion model. An 
extension of the proposed numerical scheme to the coupled Burger’s equations and details of unconditional stability is 
given in Section 5. Numerical simulations with linear and nonlinear problems are performed in Section 6 using non-
uniform and uniform meshes optimum-order compact scheme. The approximate and exact solution values are compared 
regarding maximum absolute errors and numerical convergence order. The paper is finally concluded with observations 
and possible extensions.

2. Quasi-variable mesh network
Non-uniform mesh steps are commonly applied to improve numerical solution values’ accuracy for the discretized 

partial differential equation whose solutions are not smooth. One such non-uniform mesh spacing in one-dimension 
is three-point discretization, wherein the next mesh step-size has nonlinear relation to the previous mesh-step size. 
In the present scenario, the solution domain {( , , , ) : 0 , , 1,0 }x y z t x y z t TΩ = ≤ ≤ ≤ ≤  is partitioned into the mesh 
points {( , , , ),0 1,0 1,0 1,0 }.m n jl y z t l L m M n N jx J≤ ≤ + ≤ ≤ + ≤ ≤ + ≤ ≤  The time-step /t T J∆ =  is fixed and 
temporal mesh points are ,jt tj= ∆  0 .j J≤ ≤  Let 1 1, 1(1) 1, , 1(1) 1l l l m m mx x x y y yl L m M− −∆ = ∆ == − + − = +  and 

1, 1(1) 1,n n nz z z n N−∆ = − = +  be the step-sizes in spatial directions. The following step sizes are defined by
 

              1 1 1(1 ), (1 ), (1 ), 1(1) , 1(1) , 1(1) ,l l l m m m n n nx x x q My y y z zp r l L m n Nz+ + +∆ ∆ ∆ ∆ ∆= + = + = + = =∆ ∆ ∆ ∆ =         (6)

where the mesh-expansion ratios , , (0,1).p q r∈  In particular, when p = 0, q = 0, or r = 0, it produces a uniform 
distribution of mesh points along x-, y- or z-directions. In order to generate numerical mesh points, we shall use 
normalization parameters to the mesh-step sizes as 11 (1 / ), 1(1)l l lx x x Lxp l+∆ ∆+∆= ∆ =  and as the length of the spatial 
domain in each direction is unity, thus, 1

1 1.L
l lx+
= ∆Σ =  As a result, for the known value of mesh-expansion parameter p and 

boundary mesh points x0 = 0, xL+1 = 1, we can generate the quasi-variable mesh step-length and corresponding internal 
mesh points according to the formula a1  = 1, a2  = 1 + p, al –1 = (1 + pal–1), l = 3 (1) L + 1, 1

1
1 0 1( ) / ,l l

L
Lx x ax =+

+=∆ ∆− Σ  

2 12 1 1, , 3(1) 1, , 1(1) .l l l l lxa a l L lx x x x x Lx −∆ ∆= = = + =∆ = +∆ ∆ Similarly, we can generate y- and z-space mesh 
points for the known value of boundary mesh points and mesh-expansion parameters q and r respectively. For p 
≥ 0, we find that 1l lx x+ ≥∆ ∆  for all l, thus, the mesh-step sequence 1

1{ }l
L
lx +
=∆  is monotonic increasing. Therefore,

there is a Lagrange interpolating polynomial ψ  having degree 1L +  and * , 0, ..., 1,( )l l lx x Lψ += =  where 
* }0, ...,{ 1,, 1/ (1 )lx x ll xL L∆ = ∆ ++ ==  is the uniform partition of the interval [0,1]. By using the mean value

theorem, one obtains

                                               * * ** ** * *
1 1 1 1( ) ( ) ( ), ( , ).l l l l l l lx x x x x x ' x x x xψ ψ ψ+ + + +∆ = − = − = ∆ ∈                                           (7)

The maximal length of the non-uniform mesh steps is bounded by the maximal value of ( ),' xψ and it exists since 
( )xψ  is continuously differentiable. Therefore,
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, max ( ) ,l x

x v x v ' xψ+ ∈
≤∆ ∆ =

                                                                    
(8)

That is, 10(1)
max ,ll L

x v x+=
∆ ≤ ∆ and hence, / ( 1) / ,v x v L v L

∞
≤ ∆ = + <x∆ where 1 2 1, , ..., ].[ Lx x x +∆ ∆ ∆=x∆ As a result, 

we find that

                                                      ( )1( )  and 0 as .
L

O x O L
∞ ∞
= ∆ = → →∞x x∆ ∆                                                  (9)

Similarly, we can prove that the mesh points sequences { }ym m
M
�
�
1

1  and { }zn n
N
�
�
1

1  along y- and z-directions are well defined, 
and the limiting value of mesh-steps diminishes for a sufficiently large value of M and N respectively. As a result, we 
find that the maximum mesh spacing is conversely identified with the quantity of mesh points. Britz [32] and Sundqvist 
et al. [33] applied such a mesh network to wind-driven ocean circulation model and digital electrochemistry. Recently, 
Jha et al. [34-36] obtained compact operators on quasi-variable meshes to discretize two- and three-dimensions elliptic 
PDEs and described third- and fourth-order accurate formulation for solving higher dimensions elliptic PDEs on a non-
uniform mesh topology.

3. Compact operators and a high-order scheme
We shall refer to the numerical and exact values at the mesh-point ( , , , )l m n jx y z t  by wl,m,n,j and Wl,m,n,j respectively. 

For the ADEs, we need estimates of first- and second-order spatial derivatives and first-order temporal derivatives. 
Compact operators with minimal stencil width will help construct all such approximations. Upon using a linear 
combination of solution values at six neighboring mesh points 1 1 1( , , , ), ( , , , ), ( , , , )l m n j l m n j l m n jx y z t x y z t x y z t± ± ±  and one 
central mesh-point ( , , , ),l m n jx y z t  we define
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and ( , ) {( , ), ( , ), ( , )}.s p qx y r zl m n � � � �  The utilization of Taylor’s series yields
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Therefore, at the  j th-time level, all the parameter-dependent commutative difference operators   x y z, ,  and   
  x y z, ,  provide second-order precise approximations to the partial derivatives of first- and second-order in spatial 
directions. In particular, when p = 0, we get x x x� � �  and  x x� � 2 ,  where µx  and δ x  are averaging and central 
difference operators for uniformly spaced meshes along x-space. A similar observation about the operators F Sy y,  
and F Sz z,  can be seen with q = 0 and r = 0 in y- and z-directions, respectively. Likewise, one can receive compact 
operators at ( j + 1)th-time level. A straightforward compact discretization using (10)-(12) to the equation (1) yields the 
system of difference equations

                                                                   ε( ) , , ,� � �� �� � �x y z Wl x m y n z l m n j
2 2 2S S S                                                            

                               

� � � �� �G y z tx W x W y W zl l m n j l x l m n j m y l m n jm n j( , , , , , , ,, , , , , , , , ,

1 1  nn z l m n j l m n j
t

l m n

W tW

O x y z t

� �

�� � � � � � �

1

2 2 2

 , , , , , ,, )

( ),



                         (15)

where Wl m n j
t
, , ,  is the forward-difference derivative along the temporal direction, and it is given by

                                         
W W Wl m n j
t

l m n j l m n jt� � � � � � � � � �� ��� ���� � � � � � � � � �, , , , , , , , , , ,
1

1 �� �, { , }.� �0 1
                                   

(16)

The seven points compact scheme (15) is only first and second-order precise along the temporal and spatial 
direction. Moreover, it preserves the theoretical order in both the circumstances of uniform and quasi-variable mesh 
spacings. Such a type of formulation is known as a supra-convergent scheme [37]. But, computationally, it results in 
either slow convergence or unsatisfactory solution values with a reasonably practical number of mesh points, maybe 
with uniform meshes ( p = q = r = 0) or quasi-variable meshes ( ).p q r� � � � �0 0 0  Therefore, we need to develop 
a new numerical technique that is higher-order accurate in spatial and temporal directions. In this way, we obtain 
numerical solution values with a faster rate of convergence in small computing time. To develop the high-order compact 
discretization to the ADEs (1), we begin with the time-dependent partial differential equations

                                                                � � � � �2W W W W G x y z txx yy zz( ) ( , , , ).                                                         (17)

At the mesh points ( , , , ),x y z tl m n j  the equation (17) can be written as 
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Using the equations (10)-(12) and (17) in (18), we find 
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where, the higher-order term HOT Ox y z x y zl m n l m n� � � � � � � � �2 2 2 2 2 2 2( )  and
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is the high-order finite-difference discretization of Laplacian operator � � � � � � �2 2 2 2

xx yy zz .  Note that the coefficient of 
W Wl m n j

xxx
l m n j
xxxx

, , , , , ,,  etc. in the equation (20) vanishes for the free parameter value � �� �1 3 1 12/ , /  and consequently, the 
equation (20) results in

                                                                             � � � �  2W HOTl m n j, , , .                                                                        (22)

Furthermore, utilizing the compact operators (10)-(12) in the linear combination (19) and (22) yields seven-point high-
order discretization as
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where
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and summation in (23) runs over the set S1 0 0 0 1 0 0 0 1 0 0 0 1� � � �{( , , ), ( , , ), ( , , ), ( , , )}.  
Since the linear combination (19) is multiplied with ∆ ∆ ∆x y zl m n

2 2 2 ,  therefore in either case of quasi-variable meshes 
or evenly distributed meshes, the magnitude of truncation error (TE) remains the same, and it is given by

                                                      TE HOT Ox y z x y zl m n l m n� � � � � � � � � �/ [ ] ( ) .2 2 2 2 2 2 2

                                               (24)

Thus, the compact scheme (23) yields fourth-order accurate numerical solutions to the three-dimensional time-
dependent PDE (17) provided � � � � �x y zl nm .  

Now, we shall extend high-order discretization (23) to the mildly nonlinear ADEs (1), containing the unknown 
W(x, y, z, t) and its partial first-order derivatives in temporal and spatial directions as nonlinear terms. We implement 
two-level in time and begin with the weighted average of solution values at the current and immediate next temporal 
level in the following manner:

                                              , , , , , , 1 , , ,
ˆ (1 ) , 0 1.l m n j l m n j l m n jW W Wα β γ α β γ α β γη η η+ + + + + + + + + += + − ≤ ≤                                         (25)
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(34)

where s2 0 1 1 0� � �{( , ), ( , )}  and 
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For ( , , ) {( , , )},� � � � S1 0 0 0
 we consider the following functional approximations

             , , , , , , , , , , , , , , , , , ,, , , ),ˆ( , , , , ,l m n j l m n j l m n j m n m n m n
x y z t

l j l j l j l jm nG x yG W W W Wz t Wα β γ α β γ α β γ α β γ α β γ α β γ α β γ+ + + + + + + + + + + + + + + + + + + + += 



  

      (35)

where 1(1 )j j jt t tη η += + −  is the convex combination of two neighboring mesh-point along with time level. The additional 
first-order partial derivatives regarding linear combinations of functional values and approximated derivative values are

                        , , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1, , ,
ˆ [ )],(x x yy yy zz zz

l j l j x lm n m n l l m n j l m n j m ln j ml j j ln m n m n jxW W G G W W W Wσ + − + +− −= + − +∆ − − −                       (36)

                        , , , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1, ,
ˆ [ )],(m n m n m l m n j l m n j m n m n m n m

y y xx xx zz zz
l j l j y l j l j l j l n jyW W G G W W W Wσ + − + − + −−= −+ − + −∆                        (37)

                        , , , , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1,
ˆ [ )],(z z xx xx yy yy

l j l j z lm n m n n l m n jj l m n j m n m n nj l j l n jmlmW W G G W W W Wzσ + − + − + −= + − +∆ − − −                       (38)

where , ,x y zσ σ σ  and η  are free parameters to be driven in so as to obtain an error-reduced accurate scheme. The 
functional approximation at the central mesh-point of jth-time level is defined as

                                              , , , , , , , , , , , , , , , , , ,
ˆ ˆ ˆ, , , , , , , ).( ,l m n j l m n j m

yx z t
l j l j l j mln m n nj l jm n n mG x tG y z W W W W W= 



 

                                       (39)

Then, for the following values of free parameters

                                            
1 1 1 1

6 (2 ) 6 (2 ) 6 (2 ) 2
, , ,l m m

l m m
x y z

p x q y r z
p x q y r z

σ σ σ η+ ∆ + ∆ + ∆
− − −

+ ∆ + ∆ + ∆
= = = =

                                        
(40)

the modified difference relation

                                                1

2 22
, , , ( , , ) , , , ,

2
, ,l m n j S l m n l ml m n n jx y GzW α β γ α β γ α β γθ∈ + + + + + +∇ = ∆ ∆ ∆ ∑ 

                                         
(41)

is 2 2 2 2 2 22( {( ) })l m n l m nO x y z x y t tz∆ ∆ ∆ ∆ + ∆ + ∆ ∆ + ∆ -accurate and therefore, for the temporal step-size 2 2
l mx yt∆ ∝ ∆ ≈ ∆  

2 ,nz≈ ∆ the scheme (41) provides fourth-order accurate solution values on the quasi-variable mesh topology. We observed 
that the new scheme’s theoretical order (41) remains unchanged even if uniform mesh steps are considered. For the 
computer implementation of the numerical scheme (41), we shall use the Newton-Raphson method for nonlinear problems 
and the ADI method for linear equations, as described in the subsequent section.

4. ADE and ADI method
We consider discretization of the three space dimensions unsteady ADE 

                                                           
2 ( , , , ),t x y zW W bW cW dW f x y z t∇ = + + + +                                                     (42)

where b,c and d are constants and W(x, y, z, t) is the concentration of mass transfer [10, 13]. The initial and boundary 
values associated with (42) are the same as defined in (2)-(5). The application of the compact scheme (41) to the linear 
ADE (42) in terms of compact operator form results in
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                                                                       , , , 1 , , , ,L l m n j R l m n j RHSW Wχ χ+ = + ∑                                                                  (43)

where

         

�L y z xx x y y z z x x yP P P P P P P P P P� � � � � � � � � � �1 1 2 3 4 5 6 7 8 9 1F S F S F S S F S F F S 00 11 12
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S F F S F S

S S S S S S F F
y z z

x y x z y z y

z x y

x

P P
P P P P P

� �

� � � � � FF F F Fy xz zP� 18 ,   (44)

              

�R y z xx x y y z z x x yQ Q Q Q Q Q Q Q Q Q� � � � � � � � � � �1 1 2 3 4 5 6 7 8 9 1F S F S F S S F S F F S 00 11

12 13 14 15 16 17

S F F S

F S S S S S S S F F
y z

z x y x z y z y
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Q
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�

� � � � � � FF F F Fy xz zQ� 18 ,        (45)

                                  � � � �� � � � � � � � � �RHS S l m n l m n j l m n jR f f f( , , ) , , , , , , , ,,� � � � � � � � � � � � (( , , , ),x y z tl m n j� � �� � �


                             

and expressions of R S P Q ii i� � � � � �, , , ( , , ) , , , ( ) ,� �1 1 1 18  are presented in Appendix A. The compact operator form (43) is 
obtained by expressing the solution values regarding compact operators and their composites, except at the central mesh-
point (xl, ym, zn, tj). For example, the operator equations (10) give us

                                                   
W p p Wx xl m n j x l m n jl l x� � � � � �� �1

1

2
2 1 1 2, , , , , ,[ ( ){( ) }] ,S F

                                           
(46)

and

                                                                     
W Wl m n j x l m n jx� � � �1

1

2
2 2, , , , , ,[ ] .S F

                                                              
(47)

Similarly, all the remaining solution values except Wl m n j, , ,  and Wl m n j, , , +1
 at j th and ( j + 1)th-time level respectively, can 

be obtained in terms of compact operators and their composites.
The system of equations (43) results in a large sparse high bandwidth matrix, and solving such a matrix system is 

cumbersome due to exceptionally high computing time and memory. Thus, we rewrite the system (43) in a memory-
efficient and factored form. 

Let

                                                   
�L x x y y z zP P P P P P� � � � � � �( )( )( ),1 1 11 2 3 4 5 6F S F S F S                                             (48)

                                                 
�R x x y y z zQ Q Q Q Q Q� � � � � � �( )( )( ).1 1 11 2 3 4 5 6F S F S F S                                           (49)

Then, from (44), (45), (48) and (49), we find that

                                                                      ( ) ,, , , , , ,
� � �L L l m n j l m n jW W� ��

�
�1 1                                                                 (50)

                                                                        ( ) ,, , , , , ,
� � �R R l m n j l m n jW W� � �

                                                                  (51)

where

            

� � � � � � � � �� � � � � � �E E E E E E Ex y x z x y x y x yz y z z1 2 3 4 5 6 7F F F F F F S S S S S S S F SS S S F S F S

S F F S F S S S
x x y x y

x y x y

z z

z z z

E E

E E E E

� �

� � � �

� �

� � � �

8 9

10 11 12 13 yy x y x y x y x

x y

z z z z

z

E E E E

E E

F F S F S S F S F F S

F F S

� � � �

� �

� � � �

�

14 15 16 17

18 199 20

� ��F F F F Sx y yz zE ,    



Research Reports on Computer Science 94 | Navnit Jha, et al.

and
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9
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,

, , , , �� �� � �PP P E P P P1 3 5 20 3 6 12, .

The expression for Ei
−  is obtained from Ei

+  by symbolic replacement of P to Q. As a result, the discrete relation (43) 
can be expressed in the following manner

                                                   
 � � � �L l m n j R l m n j l m n j l m n j RHSW W W W, , , , , , , , , , , , .�

�
�

�� � � � �1 1                                              (52)

Upon simplifying all of E ii
� �, ( ) ,1 1 20  using multi-dimensions Taylor’s expansion and using the relation 

W W O tl m n j l m n j, , , , , , ( ),� � � �1
 we obtain

                                                      � ��
�

�� � � � � � � �W W O t zx yl m n j l m n j l m n, , , , , , ( ( ) ).1

22 2 2

                                               (53)

Consequently, the scheme (52) further simplifies the compact operator splitting scheme

                                                                        � �L l m n j R l m n j RHSW W, , , , , , .� � � �1                                                                  (54)

The scheme (54) solves the ADE (42) with the same magnitude of truncation error obtained in the scheme (41). 
Now, it is easy to write (54) as an ADI form in the following manner:

                                                             ( ) , , ..., ,, ,

**1 15 6� � � � �P P W n Nz z l m n RHSF S                                                       (55)

                                                           ( ) , , ..., ,, ,

*

, ,

**1 13 4� � � �P P W W m My y l m n l m nF S                                                      (56)

                                                 ( ) , , ..., , , , , ..., , , , ,

*1 1 0 1 21 2 1� � � � ��P P W W l L jx x l m n j l m nF S                                            (57)

where Wl m n, ,

*  and Wl m n, ,

**  are the intermediate step values between j th and ( j + 1)th-time levels. For computation purposes, 
the intermediate step boundary values needed for sweeping may be obtained in the following ways.

With the available values of Wl m n j, , ,  for the fixed time level j, we solve the tri-diagonal system of equations (55), 
and it demands the boundary data Wl m n, ,  at n = 0 and n = N + 1. These intermediate boundary data are determined from 
(56) and (57) in the following manner:

Upon using the boundary data (2)-(5) and the scheme (57), it provides the first intermediate boundary value as 

                                        
W P P W

l L m M n N
l m n l m n jx x, ,

*

, , ,( ) ,
( ) , , , ( ) ,

� � �
� � � � �

�1
1 1 0 1 0 1 1

1 2 1F S
ll L m M n N� � � � �
�
�
� 1 1 0 1 1 0 1( ) , ( ) , , ,                                 (58)

Next, with the help of (58), the second boundary data can be determined from (56) as

                                           W P P W l L m M n Nl m n l m ny y, ,

**

, ,

*( ) , , ..., , , ..., , , .� � � � � � �1 1 1 0 13 4F S                                     (59)

Therefore, the boundary data (59) along with the tri-diagonal system (55) yields the intermediate values Wl m n, ,

** ,  and 
then, the boundary data (58) along with the tri-diagonal system (56) may be solved for Wl m n, ,

* .  Finally, the prescribed 
boundary data (2)-(5) and the tri-diagonal system (57) can be computed to obtain the solution value Wl m n j, , , +1  at the next 
time level.
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5. Coupled Burger’s equation and stability analysis
The nonlinear analytic solution of one space dimension Burger’s equation, appearing in the weak non-stationary 

shock wave and turbulence model, was proposed by Cole [38]. Subsequently, [39, 40] reported solutions to the 2D 
Burger’s equation. The three-dimensional coupled Burger’s equations were discussed in recent years in [41, 42]. The 
equations are

                                                            ( ) ,� � � � � � �xx yy zz t x y zU V W� � � � � �                                                      (60)

where � �� �( , , , ) [ , , ]x y z t U V W  is the irrotational velocity vector and Re =1/   is the Reynolds number used to 
predict patterns of fluid flow.

The numerical scheme (41) can be extended to the coupled equation (60) by substituting � �U V W, ,  in the 
approximations (16) and (25)-(34). The further formulations are obtained as
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l m n jV W





� � � �l m n j
z
� � �, , , ,   (61)

where � �U V W, , .  The additional first-order partial derivatives approximations (36)-(38) can be extended as

                         
( ) ( )

, , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1, , ,ˆ [ ( )],x x U U yy yy zz zz
l m n j l m n j x l l m n j l m n j l m n j l m n j l m n j l m n jx G Gψ ψ σ ψ ψ ψ ψ+ − + − + −= + ∆ − − − + − 

                       (62)

                        
( ) ( )

, , , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1, ,ˆ [ ( )],y y V V xx xx zz zz
l m n j l m n j y m l m n j l m n j l m n j l m n j l m n j l m n jy G Gψ ψ σ ψ ψ ψ ψ+ − + − + −= + ∆ − − − + − 

                      (63)

                         
( ) ( )

, , , , , , , , 1, , , 1, , , 1, , , 1, , , 1, , , 1,ˆ [ ( )],z z W W xx xx yy yy
l m n j l m n j z n l m n j l m n j l m n j l m n j l m n j l m n jz G Gψ ψ σ ψ ψ ψ ψ+ − + − + −= + ∆ − − − + − 

                       (64)

where values of σx, σy and σz are same as defined in (40) and � �U V W, , .  Then, the high-order quasi-variable mesh 
discretization to the coupled equation (60) is given by the system of difference relations

                                                  1

( ) 2 ( )
, , , ( , , ) , , , , , 0,U U

l m n j S l m n l m n jT U Gα β γ α β γ α β γθ∈ + + + + + +≡ ∇ −∑ =
                                            (65)

                                                   1

( ) 2 ( )
, , , ( , , ) , , , , , 0,V V

l m n j S l m n l m n jT V Gα β γ α β γ α β γθ∈ + + + + + +≡ ∇ −∑ =
                                            

(66)

                                                  1

( ) 2 ( )
, , , ( , , ) , , , , , 0.W W

l m n j S l m n l m n jT W Gα β γ α β γ α β γθ∈ + + + + + +≡ ∇ −∑ =
                                            (67)

The solution data to the next time level for the system of nonlinear difference relations (65)-(67) is obtained by 
applying the Newton-Raphson method
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                                                            (68)

where
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is the Jacobian matrix. With the iteration scheme (68), we will compare the error and behavior of the quasi-variable 
compact scheme’s numerical solutions with a uniform mesh high-order scheme.

Next, we shall describe the Hopf-Cole transformation to the coupled equation (60), which is equivalent to the 
coupled equation

                                                           ( ) ,xx yy zz t x y zU U U U UU VU WU+ + = + + +                                                      (69)

                                                            ( ) ,xx yy zz t x y zV V V V UV VV WV+ + = + + +                                                       (70)

                                                          ( ) .xx yy zz t x y zW W W W UW VW WW+ + = + + +                                                    (71)

Let � � �g,  then U g V gx y� � � �,  and W gz� � .  Therefore, equations (69)-(71), upon integrating with respect 
to x, y and z respectively, result in the following form

                                                   
( ) [( ) ( ) ( ) ] ( ).g g g g g g g txx yy zz t x y z� � � � � � �1

2

2 2 2 �
                                             

(72)

Again, using the substitution g H x y z t� �2 ln ( ( , , , )), equation (72) reduces to 

                                                                  



( ) ( ) .H H H H t Hxx yy zz t� � � � 1

2
�

                                                            
(73)

Finally, the transformation H x y z t x y z t t dt( , , , ) ( , , , ) exp ( )� �� �� �1

2
 to the equation (73) results in a standard diffusion 

equation

                                                                              ( ) .� � � �xx yy zz t� � �                                                                         (74)

We shall describe the Fourier stability of the ADI compact scheme to the standard diffusion equation (74). One can 
obtain the high-order accurate ADI scheme of (74) upon replacing W  to φ  and substituting b = c = d = 0, f (x, y, z, t) 
= 0, in the scheme (54). Following the technique discussed in [27, 31], we take � � � � �

l m n
j j i x y ze l m n
, ,

( )
,� � �  as the error at 

 jth-time level, where ξ  is an amplification factor, a complex constant, α, β, γ are real numbers and i � �1. Then, from 
the equation (54), the error equation is given by
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S ince  � ��l m n
j

l m n
j

, , , , ,� �1 ( , , ) ( , , ) ( , , )x y z x y z x y zl m n l m n l m n� � � � � � � �1 1 1
 and  ( , , ) ( , , ) ( , , ).x y z x y z x y zl m n l m n l m n� � � � � �� � � � �1 1 1 1 1 1
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amplification factor is obtained as � � � �� x y z , where 
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If we denote L L Lx y z
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,  where
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Upon simplification, one finds that 

       

A C B D ts x p x x x tsx x x x l l l l� � � � � � � � � � �� 1

2

1 22 12 2sin ( / ) / [ ( ) ] sin� 22

1 1

2

3

2

2 12 2

3 2

( / ) / [ ( ) ]

( ) sin ( {

�

�

� � � �

� � � � � � �
� �x p x x

t p x s x
l l l

l l xx p x x xl l l l� �� � � �1

2

12 12 2} / ) / [ ( ) ],    (77)

where

                                                     s p p p px x x xl l l l1

5 4 25 4 257 27 64 96 64� � � � � � � � � ,

                                                 s p p p px x x xl l l l2

5 4 25 4 227 27 1 32 32 37� �� � � � � � � �( ) ,

                                                         
4 3 24 3 2

3 6 4 8 169 .l l l ls x x xp p p px∆ − ∆ ∆ + ∆ −= +

Since  � � � � � �0 0 1, , , ,x y zl m n  and 0 < p, q, r < 1, we observe that s1 > 0, s2 > 0 and s p p p p px x x x xl l l l l3

3 2 23 2 23 4 8 16 7 8 1� � � � � � � � � � � � .

s p p p p px x x x xl l l l l3

3 2 23 2 23 4 8 16 7 8 1� � � � � � � � � � � � . That is, s p xl3

2 215 16 15 16 1� � � � � � � � 0,  and hence, A C B Dx x x x� � 0.  As a
result, we obtain �x �1. In the same manner, we can establish that � y �1  and �z �1.  Consequently, � �1,  which
proves the unconditional stability of the high-order quasi-variable meshes two-level implicit compact scheme applied to 
transformed coupled Burger’s equation in (3 + 1)-dimensions.

6. Numerical experiments and error estimation
This section is devoted to simulations executed on the Navier-Stokes equations, Burger’s equations, and ADEs. 

We executed computer programming in C, and symbolic computations in Maple on Mac operating system. We shall 
examine linear problems to illustrate the effectiveness of the new quasi-variable meshes alternating direction implicit 
scheme of high-order accuracy. To solve a difference equation's nonlinear system, we have used the Newton-Raphson 
method [43, 44], and the iterations continue until the absolute error tolerance reaches 10-10. The initial and time-
dependent boundary data in each problem are determined from the analytic solution values on the cuboid’s surface. In 
each case, the time domain is taken as 0 ≤ t ≤ 1, and error in the solution values are computed at t = 1. In the following 
numerical simulations, all the spatial directions have the same quantity of mesh points (L = M = N). The number of 

mesh points in the temporal direction is determined from � � � � � �t LM yxl m� � �/ ( ) , . ,1 6  and J
t

� �
��

�
���

1 , where 

�� ��  the ceiling function computes the least integer value greater than or equal to 1/ .∆ t  We shall determine maximum 
absolute errors and corresponding numerical order as a measure of accuracies using the following formula
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In the following experiments, we shall investigate the proposed scheme’s advantage over existing uniform mesh 
high-order implicit compact schemes.

Example 6.1 We consider the source less heat equation in the three-dimensions

                                                           ( ) , , , , .W W W W x y z txx yy zz t� � � � � �0 1 0                                                      (79)

It administers quiescent medium thermal incident and temperature distribution in solid with constant thermal diffusivity 
[45]. It also appears in an unsteady mass transfer process with fixed diffusion. The model possesses an analytic solution 
W x y z t e x y zt( , , , ) sin( )sin( )sin( ),� �3 2� � � �  where   is the coefficient of dispersion (diffusion) [46]. The numerical 
simulations with 1  show that solution values preserve order and accuracy in case of uniform meshes scheme. 
However, at a large diffusion coefficient value, the stream tends to be dominated by laminar heat flow. Therefore, for 
1,  we need to observe the behaviour of solution values. The order and accuracies deteriorated while taking uniform 
meshes, and thus, we have considered quasi-variable meshes in a high-order implicit scheme to capture the maximum 
absolute error and computational order for  =10 100 1,  and 102 at the final time t = 1 in Table 1. Figure 1 shows the 
sliced three-dimensional view of the temperature profile W x y z t( , , , )  in the xy-, yz-, zx-plane evaluated at z = 0.2, x = 0.8,  
and y = 0.8 respectively with   = 10 and L = 4 at the time level t = 1.

Table 1. The ∞-norm errors and numerical order in Example 6.1

L J p q r
∞

( , , )L M N ��

 =100

4 10 0.60 0.70 0.40 6.30e-05 ---

8 40 0.30 0.20 0.40 3.47e-06 4.2

16 160 0.10 0.10 0.06 1.18e-07 4.9

 =101

4 10 0.40 0.70 0.72 5.74e-05 ---

8 40 0.30 0.20 0.24 3.45e-06 4.1

16 160 0.10 0.10 0.11 1.39e-07 4.6

 =102

4 10 0.74 0.74 0.74 7.66e-04 ---

8 40 0.20 0.20 0.10 4.67e-05 4.0

16 160 0.10 0.10 0.06 2.43e-06 4.3
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Figure 1. Sliced three-dimensional view of temperature profile in Example 6.1

Example 6.2 The three-dimensional ADE   

                                           ( ) , , , , .W W W W W W W x y z tb c dxx yy zz t zx y� � � � � �� � � 0 1 0                                     (80)

possesses the concentration of mass transfer W x y z t( , , , )  in the analytic form 

                                 
W x y z t

t
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The accuracy in numerical solutions is obtained for the various diffusion and advection coefficient values. In the 
following experiments, we shall take b = c = d. Table 2 and Table 3 represents the solution errors at  � � �10 103 4, ,  b = 0, 
( ),b < < 1  using the uniform and quasi-variable meshes compact formulation, respectively. Table 4 shows the solution 
error at  � � � �10 10 104 5 6, , ,  b = 1.0, ( ),b � � 1  using quasi-variable meshes compact scheme. Table 5 represents the 
solution error for the various possibilities of diffusion and advection coefficients:  � �10 2 ,  b = 2.0, ( , ); � �b b 1

 � �10 2 ,  b = 0.8, ( ); < <b 1  � �10 2 , b = 10-2, ( ) � �b 1  and  � �10 2 ,  b = 10-3, ( ).b < < 1  A uniform meshes high-
order compact scheme (p = q = r = 0) fails to obtain the solution values in all the above cases accurately. In contrast, 
a non-uniformly spaced quasi-variable meshes optimum, accurate implicit compact scheme determines the solution 
values precisely, and the same reflects in tabulated maximum absolute errors and computational orders. In Table 6, the  
 ∞-errors using the proposed method at L = 20,  � �10 2  shows superiority over the existing method [7]. Figure 2 shows 
the sliced three-dimensional surface plot of the concentration of mass transfer W (x, y, z, t) in the xy-, yz-, zx-plane 
evaluated at z = 0.2, x = 0.8, and y = 0.8 respectively with   = 0.01, b = c = d = 0.01 and L = 8 at the time level t =1.
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Table 2. The ∞-norm errors and numerical order in Example 6.2

L J
∞

( , , )L M N �� ∞
( , , )L M N �� ∞

( , , )L M N

 � �10 3  � �10 3  � �10 4  � �10 4  � �10 5

4 10 7.91e-01 --- 8.98e-01 --- 9.09e-01

8 40 5.23e-01 0.6 8.60e-01 0.06 9.05e-01

16 160 1.08e-01 2.3 7.27e-01 0.24 8.90e-01

32 640 1.46e-03 6.2 3.78e-01 0.94 8.23e-01

Table 3. The ∞-norm errors and numerical order in Example 6.2

L J p q r
∞

( , , )L M N ��

 � �10 3

4 10 0.10 0.10 0.3100 9.99e-04 ---

8 40 0.18 0.18 0.2300 8.52e-05 3.6

16 160 0.01 0.09 0.0800 5.78e-06 3.9

32 640 0.01 0.01 0.0383 3.15e-07 4.2

 � �10 4

4 10 0.46 0.41 0.4100 9.77e-03 ---

8 40 0.10 0.04 0.1600 6.06e-04 4.0

16 160 0.00 0.03 0.0861 3.92e-05 4.0

32 640 0.01 0.01 0.0375 2.09e-06 4.2

Table 4. The ∞-norm errors and numerical order in Example 6.2

L J p q r
∞

( , , )L M N ��

 � �10 4

4 10 0.300 0.300 0.900 9.36e-02 ---

8 40 0.300 0.020 0.300 5.25e-03 4.2

16 160 0.100 0.080 0.040 3.00e-04 4.1

32 640 0.030 0.030 0.030 1.51e-05 4.3

 � �10 5

4 10 0.900 0.010 0.700 9.17e-02 ---

8 40 0.800 0.500 0.300 5.92e-03 4.0

16 160 0.100 0.100 0.100 3.65e-04 4.0

32 640 0.035 0.036 0.037 2.11e-05 4.1

 � �10 6

4 10 0.900 0.010 0.700 9.24e-02 ---

8 40 0.450 0.300 0.300 5.63e-03 4.0

16 160 0.110 0.100 0.100 3.47e-04 4.0

32 640 0.036 0.036 0.036 2.86e-05 3.6
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Table 5. The ∞-norm errors and numerical order in Example 6.2 with  � �10 2   

L J p q r
∞

( , , )L M N ��

b = 2.0

4 10 0.800 0.80 0.80 6.50e-06 ---

8 40 0.400 0.30 0.86 4.03e-07 4.0

16 160 0.100 0.10 0.11 2.36e-08 4.1

32 640 0.038 0.04 0.04 9.84e-10 4.6

b = 0.8

4 10 0.6000 0.1 0.1 9.08e-04 ---

8 40 0.2000 0.1 0 5.52e-05 4.0

16 160 0.0100 0.1 0 3.60e-06 3.9

32 640 0.0001 0 0 2.57e-07 3.8

b = 10-2

4 10 0.0 0.0 0.280 5.25e-02 ---

8 40 0.0 0.0 0.286 3.09e-03 4.2

16 160 0.0 0.0 0.0 1.73e-04 4.2

32 640 0.0 0.0 0.0 1.03e-05 4.1

b = 10-3

4 10 0.0 0.0 0.280 5.78e-02 ---

8 40 0.0 0.0 0.286 3.61e-03 4.0

16 160 0.0 0.0 0.0 1.72e-04 4.4

32 640 0.0 0.0 0.0 1.03e-05 4.1

Table 6. Comparison of ∞-norm errors in Example 6.2 with L = 20,  � �10 2  

b T p q r
∞

( , , )L M N
∞-error in [7]

0.80 0.05 0 0 0.10 1.68e-08 5.82e-04

2.00 0.05 0 0 0.10 1.63e-06 7.76e-04

0.80 0.20 0 0 0.10 5.40e-04 7.72e-04

2.00 0.20 0.05 0.05 0.05 2.54e-02 1.76e-01
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Figure 2. Sliced three-dimensional view of mass transfer in Example 6.2

Example 6.3 Consider the transient nonlinear convection-diffusion equation

                                           ( ) , , , , ,( )W W W W W W W x y z tWxx yy zz t zx y� � � � � �� � � 0 1 0                                     (81)

where W x y z t( , , , )  represents the velocity field in x, y, z-directions and   is the kinematic viscosity [47]. It possesses 
analytic solutions 

                                             W x y z t x y z t( , , , ) exp[{ ( ) ( ) } / ].� � � � � � �� � � � � �� �2 2 2                                         (82)

Comparing the analytic solution (82) and approximate numerical solution values at the time level t = 1 and parameter 
value � �� � �0 8 1. , ,  with quasi-variable meshes and uniformly spaced mesh points in Table 7, it is evident that  
∞-norm errors and convergence order using quasi-variable mesh points high-order compact scheme is better than the 
uniform meshes high-order scheme. 

Example 6.4 In the computational experiments of Burger’s equation (60), we will take the analytic solution [41, 
42], 

                                                  U x y z t A e A x B y C zt( , , , ) cos( )sin( )sin( ),� � �2 � �� � � �� 

                                         (83a)

                                                  V x y z t B e A x B y C zt( , , , ) sin( ) cos( )sin( ),� � �2 � �� � � �� 

                                         (83b)

                                                 W x y z t C e A x B y C zt( , , , ) sin( )sin( ) cos( ),� � �2 � �� � � �� 

                                         (83c)

where � � � � � ��� � � �[ sin( )sin( )sin( )]e A x B y C zt 1  and � �� � �2 2 2 2( ).A B C  The wavenumbers are set at A = B 
= C = 3. The amplitude controlling parameters are taken as α = 1.0. The cubic domain is non-uniformly partitioned 
with 4, 8 and 16 mesh points along each spatial directions. The ∞-errors of the U-velocity at the Reynolds number 
Re = =1 10 102 3/ ,  and time level t = 1 with quasi-variable meshes high-resolution implicit compact scheme are given 
in Table 8 and Table 9 at β = 0.1 and 1.0, respectively. Change in the Reynolds number and amplitude parameter value 
produces slight variations in the magnitude of ∞-errors. Simulations with p = q = r = 0 results in ill-behaved solution 
values and oscillating computational order. Figures 3 to 5 show the sliced three-dimensional view of the velocity vector 
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U(x, y, z, t), V(x, y, z, t) and W(x, y, z, t) respectively in the xy-, yz-, zx-plane evaluated at z = 0.1, x = 0.8,  and y = 0.9 
respectively with the Reynolds number value Re = 102, wavenumbers A = B = C = 3, amplitude controlling parameters α 
= β = 1.0 and L = 16 at the time level t = 1.

Table 7. The ∞-norm errors and numerical order in Example 6.3

L J p q r
∞

( , , )L M N ��

4 10 0 0 0 9.41e-01 ---

8 40 0 0 0 2.11e-01 2.2

16 160 0 0 0 2.56e-02 3.0

4 10 0.1100 0.0100 0.0200 9.38e-02 ---

8 40 0.0120 0.0170 0.0100 7.65e-03 3.6

16 160 0.0029 0.0033 0.0026 5.54e-04 3.8

Table 8. The ∞-norm errors and numerical order in Example 6.4 with β = 0.1

L J p q r
∞

( , , )L M N ��

 � �10 2

4 10 0.500 0.300 0.500 4.64e-03 ---

8 40 0.010 0.130 0.110 2.73e-04 4.1

16 160 0.001 0.002 0.001 1.66e-05 4.0

 � �10 3

4 10 0.600 0.5 0.5 3.63e-04 ---

8 40 0.200 0 0 2.75e-05 3.7

16 160 0.010 0 0 1.65e-06 4.1

Table 9. The ∞-norm errors and numerical order in Example 6.4 with β = 1.0

L J p q r
∞

( , , )L M N ��

 � �10 2

4 10 0.700 0.800 0.790 8.15e-03 ---

8 40 0.200 0.400 0.300 5.06e-04 4.0

16 160 0.001 0.100 0.111 3.03e-05 4.1

 � �10 3

4 10 0.200 0.300 0.500 7.14e-04 ---

8 40 0.100 0.300 0.350 4.75e-05 4.0

16 160 0.010 0.110 0.10 1.89e-06 4.7
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Figure 3. Sliced three-dimensional view of velocity U(x, y, z, t) in Example 6.4

                                     
Figure 4. Sliced three-dimensional view of velocity V(x, y, z, t) in Example 6.4
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Figure 5. Sliced three-dimensional view of velocity W(x, y, z, t) in Example 6.4

Example 6.5 The time-dependent three space dimensions incompressible Navier-Stokes equations in the non-
dimensional form is given by

                                                       ( ) ,U U U U WUUU VUxx yy zz t zx y x� � � � � � ��                                                (84a)

                                                         ( ) ,V V V V WVUV VVxx yy zz t zx y y� � � � � � ��                                                (84b)

                                                      ( ) ,W W W W WWUW VWxx yy zz t zx y z� � � � � � ��                                              (84c)

where (U, V, W) is the velocity vector, ��� � � �( , , , ) ( ) / ,x y z t U V W2 2 2 2  is the pressure, and Reynolds number 
Re =1/ ,  is used to predict patterns of fluid flow [48, 49]. In the numerical simulations with Navier-Stokes equations, 
the number of mesh points of the computational domain with each side length being a unity is chosen as 4, 8, and 16 to 
compute the numerical convergence rate. The analytic solution for computing ∞-errors are taken as

                                                U x y z t e e z y e y xt x z( , , , ) [ sin( ) cos( )],� � � � ��� � � � �� � � 2

                                       (85a)

                                                V x y z t e e x z e z yt y x( , , , ) [ sin( ) cos( )],� � � � ��� � � � �� � � 2

                                       (85b)

                                                W x y z t e e y x e x zt z y( , , , ) [ sin( ) cos( )],� � � � ��� � � � �� � � 2

                                       (85c)

where α, β are constants and it controls the frequency and amplitude of the solution values. The value of the Reynolds 
number is assumed to 10 and 100, other data are set at α = 2π and β = 0.1. The uniform meshes’ ∞-norm errors 
are discouraging. Therefore, numerical results pertaining to quasi-variable meshes compact scheme for computing  
∞-errors in numerical and exact pressure are recorded in Table 10. By increasing the value of the Reynolds number 
from 10 to 100 and decreasing the controlling parameter value β from 0.1 to 0.01, the computational order remains 
unchanged in the uniform and non-uniform distribution of mesh points. Figure 6 shows the sliced three-dimensional 
view of numerical pressure ( , , , )x y z t℘  on a 16 × 16 × 16 cell discretization along the cross sections (x, y, z) = (0.8, 0.8, 
0.2) with the Reynolds number value Re = 10 and parameter value α = 2π, β = 0.1 at the time level t = 1.
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Table 10. The ∞-norm errors and numerical order in Example 6.5 with β = 0.1

L J p q r
∞

( , , )L M N ��

 � �10 1

4 10 0.720 0 0 9.05e-05 ---

8 40 0.090 0 0 5.66e-06 4.0

16 160 0.010 0 0 3.57e-07 4.0

 � �10 2

4 10 0.970 0.99 0.99 3.42e-02 ---

8 40 0.180 0 0 3.98e-03 3.1

16 160 0.001 0 0 2.62e-04 3.9

                                     
Figure 6. Sliced three-dimensional view of numerical pressure in Example 6.5

7. Conclusion
The present work described a two-level, high-resolution implicit compact scheme on a quasi-variable mesh 

topology for solving three-dimensional second-order linear and mildly nonlinear ADEs. The new unconditional stable 
scheme is derived so that the accuracy of order two in time and four in spatial direction remains unchanged on a 
uniformly or non-uniformly distributed mesh network. However, considering non-uniformly propagated mesh points 
yields more accurate solution values, as shown in the computational illustrations, which is the main highlight of the 
present work. Moreover, all the operators involve only three mesh points in every spatial direction; thus, presenting 
the numerical scheme for linear ADEs in the tri-diagonal decomposition is easy. The Thomas algorithm can solve 
an operator-splitting scheme with a considerably short CPU time. Moreover, the present high-order scheme needs 
significantly fewer mesh points to accurately resolve linear convection-dominated equations, nonlinear coupled Burger’s 
equations, and Navier-Stokes equations in three dimensions. Numerical simulations demonstrate superior efficiency and 
accuracy over existing uniform mesh high-order schemes.
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Appendix A
Values of expressions appear in equation (43).

P1 b q y r z x q y r z x b xm n l m n l l[( ) ( ) ] / [ ] [3 3 3 3 2 2 2 2
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�� � � � � � � � �p x p x b p x t b t xl l l l{ ( ) }] / [ ] / [ ]2 216 81 96 288 2 
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