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Abstract: Quantile regression models have become popular among researchers these days. These models are being 
used frequently for obtaining the probabilistic forecast in different real-world applications. The Support Vector Quantile 
Regression (SVQR) model can obtain the conditional quantile estimate using kernel function in a non-parametric 
framework. The ϵ-SVQR model successfully incorporates the concept of the asymmetric ϵ-insensitive tube in the 
SVQR model and enables it to obtain a sparse and accurate solution. But, it requires a good choice of the user-defined 
parameter. A bad choice of ϵ value may result in poor predictions in the ϵ-SVQR model. In this paper, we propose 
a novel ‘ν-Support Vector Quantile Regression’ (ν-SVQR) model for quantile estimation. It can efficiently obtain a 
suitable asymmetric ϵ-insensitive zone according to the variance present in the data. The proposed ν-SVQR model 
uses the ν fraction of training data points for the estimation of the quantiles. In the ν-SVQR model, training points 
asymptotically appear above and below the asymmetric ϵ-insensitive tube in the ratio of 1 − τ and τ. Apart from these, 
there are other interesting properties of the proposed ν-SVQR model, which we have briefly described in this paper. 
These properties have been empirically verified using simulated and real-world data sets also.

Keywords: quantile regression, pinball loss function, support vector machine, ϵ-insensitive loss function

1. Introduction

Given the training set {( , ) : , , 1, 2, ..., }n
i i i iT x y x y i l= ∈ ∈ =   and [0,1],τ ∈  the problem of quantile regression 

is to estimate a real-valued function ( )f xτ  such that a proportion τ of y/x will be lying below of the estimate ( )f xτ .  
For τ = 0.5, the problem is equivalent to median estimation. The estimation of ( )f xτ  is difficult, but more informative 
than estimation of only mean regression f (x). The estimation of ( )f xτ  for different values of τ can briefly describe 
the different characteristics of the conditional distribution of y/x. In many real-world problems, the estimation of mean 
regression f (x) is not required or enough, rather they require the estimation of quantile ( )f xτ . 

The study of quantile regression problem has initially been started in 1978 by Koenkar and Bassett [1]. Later, it 
has been briefly discussed and described by Koenker in his book [2]. Koenkar and Bassett [1] proposed the pinball loss 
function for the estimation of the quantile function ( )f xτ . For a given quantile 0,1),τ ∈(  the pinball loss function was 
an asymmetric loss function suitable for quantile estimation. It was given by
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Support Vector Regression (SVR) models [3-5] are one of the most popular class of regression models which 
can estimate the mean regression function f (x) efficiently. SVR models commonly solve a Convex Program which 
guarantees the global optimal solution. These models have been widely used in solving real-world problems of diverse 
domains.

Takeuchi et al. [6] initiated the study of the quantile regression problem in non-parametric framework on the line 
of SVR models. They have proposed Support Vector Quantile Regression (SVQR) model in which they have minimized 
the pinball loss function in the SVR type optimization problem for estimation of the quantile function ( ).f xτ  The 
obtained solution of the SVQR model is not sparse as every training data point is allowed to contribute to the empirical 
risk which is measured by the asymmetric pinball loss function.

Anand et al. have proposed an asymmetric ϵ-insensitive pinball loss function in their work [7] which extends the 
concept of ϵ-insensitive zone in the pinball loss function in true sense. The asymmetric ϵ-insensitive pinball loss can 
obtain a suitable ϵ-insensitive zone of fixed width for every value of τ. The ϵ-insensitive zone was partitioned using the 
τ value in the asymmetric ϵ-insensitive pinball loss function. Using the asymmetric ϵ-insensitive pinball loss function, 
they have proposed the ϵ-SVQR model which can obtain better generalization ability than existing SVQR models and 
successfully brings the sparsity back into the SVQR model.

However, the ϵ-SVQR model [7] requires a good choice of the value of ϵ for obtaining a better prediction of 
quantiles. A bad choice of ϵ can distort the performance of the ϵ-SVQR model [7].

This paper proposes an efficient SVQR model which appropriately trade-offs the total width of the asymmetric 
ϵ-insensitive zone in its optimization problem via the user-defined parameter ν. The proposed model has been termed 
with the ν-Support Vector Quantile Regression (ν-SVQR) model. The ν-SVQR model can adjust the overall width of 
the asymmetric ϵ-insensitive zone such that at most ν fraction of training data points lie outside of it. This capability 
of ν-SVQR enables it to automatically adjust the width of the insensitive zone according to the variance present in the 
data without adjusting any parameter. In the ν-SVQR model, training points asymptotically appear above and below the 
asymmetric ϵ-insensitive tube in the ratio of 1 − τ and τ. Further, there are other interesting asymptotic properties of the 
ν-SVQR model which we have briefly described in this paper. Several experiments on simulated as well as UCI data 
sets have been performed to empirically verify claims made in this paper.

We now describe the notations used in the rest of this paper. We have considered all vectors as column vectors 
unless we have specified them. For a given vector ,nx x∈    denotes the L2 norm of x. We have considered the 
training set {( , ) : , , 1, 2, ..., }n

i i i iT x y x y i l= ∈ ∈ =   for the quantile estimation in this paper. For a given quantile 
0,1),τ ∈(  the quantile estimate has been obtained using ( ) ( ) .Tf x w x bτ φ= +  Here � :n �  is a mapping from the 

input space to a higher dimensional feature space   such that for every pair of data points xi and xj, the ( ) ( )T
i jx xφ φ  

can be obtained using a positive semidefinite kernel K(xi, xj) [8]. iξ  and *
iξ , for i = 1, 2, …, l are slack variables and 

have been used for measuring the empirical risk. , ,i i iα β γ  and iη  are Lagrangian multipliers. C and ν are user-defined 
positive parameters.

The rest of this paper is organized as follows. In Section 2, we have briefly reviewed the variants of quantile 
regression models available in the literature. Section 3 briefly describes the standard SVQR model [6] and ϵ-SVQR 
model [7]. In Section 4, we present our proposed ν-SVQR model. In Section 5, we have discovered different properties 
of our ν-SVQR model. Section 6 contains the numerical results obtained by different nature of experiments carried out 
on simulated as well as real-world data sets to empirically verify the properties of the proposed ν-SVQR model. Section 
7 concludes this paper.

2. Related work
In this section, we shall briefly review different relevant quantile regression models. Koenkar and Bassett [1] 

have first introduced the notion of quantile regression. Thereafter, it has been briefly statistically studied and extended 
for several important real-world applications. Some of important effective variants of quantile regression models are 
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quantile smoothing splines [9], quantile autoregression [10], copula-based non-linear quantile autoregression [11] and 
interior point algorithm for quantile estimation [12].

Takeuchi et al. [6] have started the study of the SVQR model for obtaining the kernel quantile estimate in a non-
parametric framework. Thereafter, researchers have attempted to extend the SVQR model on the line of the ϵ-SVR 
model for increasing its generalization ability as well as obtaining sparse solutions. For this, they have attempted to 
propose the ϵ-insensitive pinball loss functions to incorporate the concept of ϵ-insensitive zone in the asymmetric 
pinball loss function.

At first, Takeuchi and Furuhashi considered the ϵ-insensitive pinball loss function for estimation of the non-
crossing quantile in their work [13]. Further, Hu et al. had also considered a similar kind of ϵ-insensitive pinball loss 
function in their work [14] for estimation of quantiles. However, the ϵ-insensitive zone in these pinball loss functions 
was symmetric. The use of the symmetric ϵ-insensitive zone in the asymmetric pinball loss function failed to perform 
well for the estimation of quantiles.

Soek et al. have first considered the asymmetric ϵ-insensitive zone in the pinball loss function in their proposed 
e-sensitive pinball loss function [15]. Later on, Park and Kim also proposed a similar kind of loss function in their work 
[16]. But the problem with these pinball loss functions was that they failed to provide a suitable ϵ-insensitive zone for 
every value of τ. Anand et al. have proposed an effective asymmetric ϵ-insensitive pinball loss function and extended the 
SVQR model on the line of the ϵ-SVR model efficiently [7].

Meinshausen has proposed quantile regression forest [17] by extending the idea of random forest regression in 
quantile estimation. Thereafter the idea of quantile regression forest was efficiently used in load forecasting [18, 19], 
heat waves [20], and digital soil mapping products [21].

In recent years, the quantile regression neural networks [22, 23] have gained popularity among researchers. 
Researchers have used them along with modern deep learning architectures for obtaining efficient probabilistic load 
forecasting [24-28], wind forecasting [29-31], and photovoltaic power forecasting [32, 33].

3. SVQR models
For the training set {( , ) : , , 1, 2, ..., }n

i i i iT x y x y i l= ∈ ∈ = 
 and the quantile 0,1),τ ∈(  the SVQR model 

estimates the function ( ) ( )Tf x w x bτ φ= +  in the feature space for the estimation of the τth quantile, where � :n � 
is a mapping from the input space to a higher dimensional feature space  .

3.1 Standard SVQR model

The standard SVQR model minimizes

                                                                
2

, 1

1min ( ( )),
2

l
T

i iw b i
w C L y w x bτ

=

+ − +∑ 
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where Lτ(v) is the asymmetric pinball loss function which is given by

                                                                       

        if 0,      
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( 1)    otherwise.  
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τ
τ

≥
=  −                                                                    (3)

Using the l-dimensional variables 1 2( , , ..., )lξ ξ ξ ξ=  and * * * *
1 2( , , ..., ),lξ ξ ξ ξ=  the optimization problem (2) can be 

equivalently converted to the following Quadratic Programming Problem (QPP)
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Here C ≥ 0 is a user-defined parameter that is used to find a good trade-off between empirical risk and model complexity 
of the estimator. The QPP (4) of the standard SVQR model can be easily solved by solving its corresponding Wolfe dual 
problem. More detail about the standard SVQR model can be found in Takeuchi et al. [6].

3.2 ϵ-SVQR model

Anand et al. [7] have proposed an asymmetric ϵ-insensitive pinball loss function that can obtain a suitable 
asymmetric ϵ-insensitive zone for every value of τ. The asymmetric ϵ-insensitive pinball loss function is given by

                                                          L u u u� � � � �  ( ) max( ( )( ), , ( ( ) )).� � � � � �1 0 1                                                      (5)

It can be better understood in the following form
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Figure 1 shows that the asymmetric ϵ-insensitive pinball loss function can generate the suitable asymmetric 
ϵ-insensitive zone for different values of τ.

The ϵ-SVQR model minimizes
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which can be equivalently converted to the following QPP
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In the ϵ-SVQR model, ϵ ≥ 0 is the user-defined parameter and a good value of ϵ is required beforehand for the 
efficient estimate of quantiles. For the solution of the ϵ-SVQR primal problem (8), we obtain its corresponding Wolfe 
dual problem as follows
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After obtaining the solution of the dual problem (9), we can estimate ( ),f xτ  for any test data point nx∈  using

                                                                      1
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i

f x K x x bτ α β
=

= − +∑
                                                                

(10)

               
                                                           (a)                                                                                                                         (b)

               
                                                           (c)                                                                                                                         (d)

Figure 1. The asymmetric ϵ-pinball loss function for (a) τ = 0.1 (b) τ = 0.2 (c) τ = 0.5 and (d) τ = 0.8 with fixed ϵ =1

4. A ν-SVQR model with automatic accuracy control
We can observe from the numerical results obtained from experiments with the proposed ϵ-SVQR model that it 

requires a good choice of the value of ϵ to be supplied beforehand into it. A bad choice of the value of ϵ value can distort 
its prediction.

Taking motivation from this, we propose an efficient SVQR model that appropriately trade-offs the total width of 
the asymmetric ϵ-insensitive zone in its optimization problem via the user-defined parameter ν. The proposed model has 
been termed with ν-SVQR model. The ν-SVQR model can adjust the overall width of the asymmetric ϵ-insensitive zone 
such that at most ν fraction of training data points lie outside of it. This capability of ν-SVQR enables it to automatically 
adjust the width of the ϵ-insensitive zone according to the variance present in the data without adjusting any parameter. 
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In the ν-SVQR model, training points asymptotically appear above and below the asymmetric ϵ-insensitive tube in 
the ratio of 1 − τ and τ. There are also other interesting asymptotic properties of ν-SVQR model which make it more 
efficient and handful than ϵ-SVQR model.

4.1 ν-SVQR model

The proposed ν-SVQR model minimizes
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where C ≥ 0 and ν ≥ 0 are user-defined parameters.
For solving the primal problem (11) efficiently, we need to derive its Wolfe dual problem. The Lagrangian function 

for the primal problem (11) is obtained as
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We can now note the Karush-Kuhn-Tucker (KKT) conditions for (11) as follows
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Making use of the above KKT conditions (13-24), the Wolfe dual problem of the primal problem (11) can be 
obtained as follows
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5. Properties of ν-SVQR model
The KKT conditions (13-24) will help us to discover the various properties of the proposed ν-SVQR model. We list 

the properties of the proposed ν-SVQR model below.
Proposition 5.1: If the ν-SVQR model is applied to the training set {( , ) : , , 1, 2, ..., },n

i i i iT x y x y i l= ∈ ∈ = 
 

which results ϵ > 0, then 0i iα β =  and * 0, 1, 2, ..., .i i i lξ ξ = ∀ =  
Proof: If possible, let us suppose there exists an index i such that 0.i iα β ≠  It implies that 0iα ≠  and 0.iβ ≠  

Therefore, from the KKT condition (18) and (19) we can obtain
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i i i� � �� � � � � 0                                                            (27)

Adding equations (26) and (27) gives *
i iξ ξ+ = −  which is possible only when either 0iξ <  or * 0.iξ <  But, 

the KKT condition (24) requires 0,iξ ≥  * 0,iξ ≥  for i = 1, 2, ..., l, which contradicts our assumption. This proves 
0 1, 2, ..., .i i i lα β = ∀ =  

On the similar line, let us suppose that there exists an index i for which * 0.i iξ ξ ≠  It means that 0iξ ≠  and * 0iξ ≠  
for which we can obtain 0iγ =  and 0iλ =  from KKT condition (20). For 0iγ =  and 0,iλ =  we will obtain i

c
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and (1 )i

c
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β τ= −  from the KKT conditions (15) and (16) respectively, which is not possible as we have already proven 
that 0 1, 2, ..., .i i i lα β = ∀ =  This proves * 0 1, 2, ..., .i i i lξ ξ = ∀ =  

Proposition 5.2: For all those data points ( , ),i ix y  which lie inside or boundary of the asymmetric ϵ-insensitive 
tube, the corresponding iξ  and *

iξ  will take zero value.
Proof: The data point ( , ),i ix y  lying inside or boundary of the asymmetric ϵ-insensitive tube must satisfy
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i i� �� � � � 0                                                                   (29)

If possible, let us suppose that �i � 0  which means that �i � 0  (as the KKT condition (24) requires � �  0). Since   
we can obtain �i � 0,  we can obtain � i � 0  and further �i � 0  by using the KKT conditions (20) and (15) respectively. 
For �i � 0,  the KKT condition (18) implies that
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                                                                      y w x bi
T

i i� � � � �( ( ) ) ( ) ,� � �1                                                                  (30)

which is not possible as �i � 0.  
On a similar line, we can show that ξi

*  also cannot take non-zero values.
It is also easy to prove that the data point, which lies outside of the asymmetric ϵ-insensitive tube, the 

corresponding ξi  or ξi
*  will take a positive value.

Proposition 5.3: For the data point ( , ),x yi i  which lie inside of the asymmetric ϵ-insensitive tube, the 
corresponding αi  and βi  will take zero value.

Proof: The data point ( , )x yi i  lying inside of the ϵ-tube, the ξi  and �i
* .� 0  Therefore, we can obtain the following 

for all data points ( , )x yi i  lying inside of the ϵ-tube

                                                                   ( ( ( ) ) ( ) )y w x bi
T

i i� � � � � �� � �1 0                                                             (31)

                                                                    and ( ( ) ) .*w x b yT
i i i� � �� � � � � 0                                                              (32)

Further, the use of the KKT condition (18) and (19) will let us obtain αi  and �i � 0.  

Proposition 5.4: For the data point ( , ),x yi i  lying above of the ϵ-tube, � �i
C
l

�  and �i � 0.  For the data point 

( , ),x yi i  lying below of the ϵ-tube, �i � 0  and � �i
C
l

� �( ).1

Proof: The data point ( , )x yi i  lying above of the ϵ-tube will hold

                                                                       y w x bi
T

i� � � � �( ( ) ) ( ) ,� �1 0                                                                 (33)

for which the corresponding iξ  will take a positive value for satisfying the KKT condition (22). For 0,iξ >  we can 
get  0iγ =  from (20) and further can obtain i

C
l

α τ=  from the KKT condition (15). Further iβ  will take zero value as 

0.i iα β =  
On the similar line, we can prove that the data point ( , ),i ix y  lying below of the ϵ-tube, 0iα =  and (1 ).i

C
l

β τ= −  

Proposition 5.5: For 0 (0 (1 )),i i
C C
l l

α τ β τ< < < < −  the corresponding data point ( , )i ix y  will be lying on the 

upper (lower) boundary of the asymmetric ϵ-insensitive tube.

Proof: For 0 ,i
C
l

α τ< <  the 0iγ >  from KKT condition (15) which implies iξ  = 0. Further, for iα  > 0, we can 
obtain

                                                                          y w x bi
T

i� � � �( ( ) ) ( ) ,� �1                                                                     (34)

which means that data point ( , ),i ix y  will be lying on the upper boundary of the asymmetric ϵ-insensitive tube. On the 

similar line, we can obtain that for 0 (1 ),i
C
l

β τ< < −  the corresponding data point ( , )i ix y  will be lying on the below 
boundary of the asymmetric ϵ-insensitive tube.

Remark 5.1: For ϵ > 0, the η will take zero value and the inequalities constraint 
1

(1 )
l

i
i

τ α
=

− +∑
1

(1 )
l

i
i

Cvβ τ τ
=

≤ −∑  
of the dual problem (25) will get converted to the equality constraint

                                                                     
( ) ( ).1 1

11

� � � �
��
��� � � � � �i i
i

l

i

l

Cv
                                                              

(35)

Now, we shall term the data points which are lying outside of the asymmetric ϵ-tube with ‘errors’. The data points 
which are lying outside of the asymmetric ϵ-tube as well as the boundary of the tube are termed with ‘support vectors’. 
These data points only contribute to the construction of the final regressor.
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Proposition 5.6: Suppose the ν-SVQR is applied to some data set and the resulting ϵ is non-zero then the following 
statements hold.

(a)	 ν is the upper bound on the fraction of errors.
(b)	 ν is the lower bound on the fraction of support vectors.
Proof: For the data point, lying above the asymmetric ϵ-tube, only iα  will take the value .C

l
τ  For the data point, 

lying below the asymmetric ϵ-tube, only βi will take the value (1 ).C
l

τ−  The data point ( , )i ix y  lying on the upper (lower) 

boundary of the asymmetric ϵ-insensitive tube will be taking 0 (0 (1 ))i i
C C
l l

α τ β τ< < < < −  values. Let us suppose 

that there are m1 and m2 data points which are lying above and below the asymmetric ϵ-tube respectively. Further, there 
are m3 and m4 data points which are lying on the upper and lower boundary of the asymmetric ϵ-insensitive tube. 

For ϵ > 0, we can obtain from using (17),

                                                                
1 2(1 ) (1 ) (1 )C Cm m Cv

l l
τ τ τ τ τ τ− + − ≤ −

which implies that 1 2
1( ) .m m v
l

+ ≤  

Furthermore, there should exist at least m1 and m2 data points lying above and below the asymmetric ϵ-tube which 
would satisfy the equality (35). For these data points, we have

                                                               
1 2(1 ) (1 ) (1 )C Cm m Cv

l l
τ τ τ τ τ τ− + − = −

which implies that 1 2
1( ) .m m v
l

+ =  It further means that there should at least exist ν fraction of the support vectors.

Remark 5.2: Asymptotically, the ν equals the fraction of support vectors and errors. The probability of the data 
point lying on the boundary of the asymmetric ϵ-tube becomes zero asymptotically. This statement can be proved under 
a certain condition similar to the proof of Proposition 1 (iii) given in Scholkopf [34]. However here, we shall empirically 
verify that the ν equals the fraction of support vectors and errors asymptotically.

Remark 5.3: Asymptotically, the data points appear above and below the asymmetric ϵ-tube in the ratio of 1 − 
τ and τ respectively in the ν-SVQR model. It means that for the large value of l, there would be lν(1 − τ) and lντ data 
points lying above and below the asymmetric ϵ-tube respectively. It is because of the fact that iα  and iβ  also have to 
satisfy the KKT condition (14).

Remark 5.4: If the proposed ν-SVQR obtains the solution ( , , )w b   with parameter value ',C  then ϵ-SVQR model 
with parameters =   and 'C C N= ∗  will obtain the same solution , .w b  

Obtaining the value of ϵ and b: At first, we can obtain the value of the ϵ which is the effective width of the 
asymmetric tube. For this, we find out the data points which are lying on the upper and lower boundary of the ϵ-tube 
using Proposition 5.5. For 0 ,i

C
l

α τ< <  we can obtain the upper width of the asymmetric tube using ( ( ) ).T
i iy w x bφ− +  

For 0 (1 ),j
C
l

β τ< < −  we can obtain the lower width of the asymmetric tube using ( ( ) ) .T
j jw x b yφ + −  But, the 

computation of the final width of the asymmetric ϵ-tube does not require the value of b and can be obtained by

                                             
 � � � � � �

� �
� �( ( ( ) ( , ))) ( ( ) ( , )) ),y K x x K x x yi k k k i
k

l

k k k j j
k

l

� � � �
1 1                                      

(36)

where 0 i
C
l

α τ< <  and 0 (1 ).j
C
l

β τ< < −  
After obtaining the value of ϵ, we can obtain the value of b. For 0 ,i

C
l

α τ< <  we can obtain

                                                                
b y K x xi k k k i

k

l

� � � � �
�
� ( ) ( , ) ( ) .� � �

1

1 
                                                          

(37)
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For 0 (1 ),j
C
l

β τ< < −  we can also obtain

                                                                    
b y K x xj k k k j

k

l

� � � �
�
� ( ) ( , ) .� � �

1


                                                             

(38)

In practice, we compute values of b from equations (37) and (38) and use their average value as the final value of b. 
After computing the values of decision variables α, β and b the quantile regression is estimated by

                                                                       
f x K x x bi i i

i

l

� � �( ) ( ) ( , ) .� � �
�
�

1                                                                 
(39)

Further, like the ϵ-SVR model described in Gunn [5], if the kernel contains a bias term then, the ν-SVQR dual 
problem (25) can be solved without equality constraint and the quantile regression function is simply estimated by

                                                                         
f x K x xi i i

i

l

� � �( ) ( ) ( , ).� �
�
�

1                                                                    
(40)

6. Experimental section
In this section, we shall empirically verify the claims made in this paper. For this, we first describe our 

experimental setup. We have performed all experiments with MATLAB 17.0 environment (http://in.mathworks.com/) 
on an Intel i7 processor with 8.0 GB of RAM. The QPPs of the proposed ν-SVQR and ϵ-SVQR have been solved by the 
quadprog function with the interior-point convex algorithm available in the MATLAB 16.0 environment. For all of the 

experiments, we have used the radial basis function (RBF) kernel 
2

exp ( ),x y
q

− −   where q is the kernel parameter 

and quantile regression function is estimated by (39). The proposed ν-SVQR model requires three parameters to be 

tuned namely RBF kernel parameters q, C and ν whereas the ϵ-SVQR model requires the tuning of parameters q, C and 
ϵ. All these parameters have been tuned using the exhaustive search method (Hsu and Lin, [35]). The parameter q and C 
has been searched in the set {2i : i = −15, −9, ......9, 15}.

6.1 Performance criteria

For the evaluation of the efficacy of SVQR models, we have used some evaluation criteria which is also mentioned 
in Xu et al. [36]. Given the training set {( , ) : , , 1, 2, ..., }n

i i i iT x y x y i l= ∈ ∈ =   and true τth conditional quantile 
function ( ) ,Q y xτ  we list the evaluation criteria as follows.
(i)  RMSE: It is Root Mean Square of Error.

It is given by 2

1

1 ( ( ) ( )) .
l

i i i
i

Q y x f x
l τ τ

=

−∑
 

(ii) MAE: It is Mean of the Absolute Error.

It is given by 
1

1 ( ( ) ( )) .
l

i i i
i

Q y x f x
l τ τ

=

−∑  

(iii) Error Eτ: It is the measure which is used when the true quantile function is unknown. It is given by ,E pτ τ τ= −  
where ( ( ))i ip P y f xτ τ= ≤  is the coverage probability. For the real-world UCI data sets experiments, we would be 
using this measure. We shall compute the coverage probability pτ by obtaining the estimated τ value in 100 random 
trials.

(iv) Sparsity (u) 
#( 0) ,

#( )
u

u
=

=  where #(r) determines the number of the component of the vector r.
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Simulated data sets

We shall show different properties of the proposed ν-SVQR model and its advantages over the ϵ-SVQR model 
empirically. The best way to do this is to generate data sets as actual true quantiles can be easily computed for these data 
sets and unbiased comparisons can be made. We have generated the training set T where xi is drawn from the univariate 
uniform distribution with [−4, 4]. The response variable yi is obtained from polluting a nonlinear function of xi with 
different natures of noises in simulated data sets as follows.

                                                AD1: 
20.52(1 2 ) ,ix

i i i iy x x e ξ−= − + +  where  iξ  is from N(0, σ).

                                                AD2: 
20.52(1 2 ) ,ix

i i i iy x x e ξ−= − + +  where iξ  is from U(a, b).

The true quantile function ( )Q y xτ  in these simulated data sets can be obtained as

                                                                     
20.52 1(1 2 ) ( ),ix

i i i iy x x e Fτ ξ− −= − + +

where 1( )iFτ ξ−  is the τth quantile of random error .iξ  We have evaluated the SVQR models by generating 1,000 testing 
points in each trial.

Experiment 1

Our first experiment will empirically verify the Proposition 5.6 of this paper. We shall verify that the user-defined 
positive parameter ν in our ν-SVQR model is the upper bound on the fraction of errors and the lower bound on the 
fraction of support vectors.

For this, we have generated 200 training data points of AD1 simulated data set and obtained the numerical results 
for 10 random simulations. Table 1 shows the performance of the proposed ν-SVQR model on several values of ν for τ 
= 0.2, 0.5, 0.7, and 0.8. Figure 2 shows the proposed ν-SVQR model on several values of ν for τ = 0.1, 0.3, 0.6 and 0.9. 
The following inferences can be easily drawn from numerical results listed in Table 1 and plots in Figure 2.
(a)	 Irrespective of τ values, as the value ν increases, the total width ϵ of asymmetric ϵ-insensitive zone decreases.
(b)	 Irrespective of τ values, ν is the upper bound on the fraction of errors.
(c)	 Irrespective of τ values, ν is the lower bound on the fraction of support vectors.
(d)	 RMSE and MAE obtained by the proposed ϵ-SVQR model also vary with the parameter ν.

Experiment 2

The objective of this experiment is to study the asymptotic behavior of the proposed ν-SVQR model. We shall also 
verify the claims made in Remarks 5.2 and 5.3. We perform this experiment with the varying number of training points 
of the AD1 data set and fix the ν = 0.8 in the proposed ν-SVQR model. 

Table 2 results the numerical results obtained by the proposed ν-SVQR model on AD1 data set with different sizes 
of training set. In this table, ‘ratio’ is the ratio of training data points lying above and below the asymmetric ϵ-insensitive 
tube. The following facts can be easily observed from the numerical results listed in Table 2.
(a)	 Irrespective of τ values, the fraction of support vectors and errors converge to the ν value in the proposed ν-SVQR 

model. It has also been well illustrated by the plot in Figures 3(a) and 3(b). It is only because of the fact that the 
probability of a training data point lying on boundaries of asymmetric ϵ-insensitive tube vanishes, as the number of 
training point increases.

(b)	 Irrespective of τ values, the ratio of training data point lying above and below of the asymmetric ϵ-tube converges 
to 1 .τ

τ
−  It has also been well illustrated by the plot in Figure 3(c) and 3(d). It means that the asymmetric 

ϵ-insensitive zone used in the proposed ν-SVQR model is very suitable for handling quantile estimation problem.
(c)	 The resulting overall width of ϵ-insensitive zone converges to a constant value in the proposed ν-SVQR model.
(d)	 As the number of training points increases, there are more information available to the proposed ν-SVQR model. It 

results in decrease in RMSE values obtained by the proposed ν-SVQR model.
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Figure 2. Performance of the proposed ν-SVQR model on AD1 data set for (a) τ = 0.1 (b) τ = 0.3 (c) τ = 0.6 (d) τ = 0.9
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Table 2. Performance of the proposed ν-SVQR with different sizes of training set

τ l 100 200 500 1000 3000 5000

0.1

SV 0.85 0.83 0.81 0.81 0.80 0.80

Error 0.75 0.78 0.79 0.79 0.80 0.80

Ratio 14.00 13.09 9.97 9.72 9.20 9.17

ϵ 0.04 0.05 0.05 0.04 0.05 0.05

RMSE 0.11 0.05 0.06 0.05 0.01 0.01

0.3

l 100 200 500 1000 3000 5000

SV 0.85 0.82 0.82 0.81 0.80 0.80

Error 0.73 0.77 0.79 0.80 0.80 0.80

Ratio 2.65 2.56 2.41 2.38 2.36 2.35

ϵ 0.04 0.03 0.03 0.03 0.03 0.03

RMSE 0.10 0.05 0.03 0.04 0.01 0.01

0.7

l 100 200 500 1000 3000 5000

SV 0.85 0.82 0.82 0.81 0.80 0.80

Error 0.73 0.76 0.79 0.79 0.80 0.80

Ratio 0.35 0.38 0.42 0.43 0.43 0.43

ϵ 0.02 0.03 0.03 0.03 0.03 0.03

RMSE 0.07 0.05 0.04 0.02 0.01 0.01

0.9

l 100 200 500 1000 3000 5000

SV 0.87 0.82 0.81 0.81 0.80 0.80

Error 0.76 0.77 0.79 0.79 0.80 0.80

Ratio 0.09 0.08 0.10 0.11 0.11 0.11

ϵ 0.03 0.04 0.04 0.05 0.05 0.05

RMSE 0.13 0.06 0.07 0.03 0.02 0.02

Experiment 3

This experiment has been performed to show the capability of the proposed ν-SVQR model to automate the 
control over accuracy. The proposed ν-SVQR model has capability to automatically adjust the width of the asymmetric 
ϵ-insensitive zone for efficient prediction. For fixed values of parameters with ν = 0.3, we have simulated the proposed 
ν-SVQR model on AD1 data set with noise variance σ = 0.2 and σ = 1. Figure 4 shows the estimates obtained by the 
proposed ν-SVQR along with the ϵ-insensitive zone for τ = 0.1 and 0.9 at a fixed value of ν = 0.3. It can be observed 
that the proposed ν-SVQR model can automatically adjust the width of the asymmetric ϵ-insensitive zone according to 
the variance present in data for obtaining efficient estimates of quantiles.

Further, we have checked the performance of the proposed ν-SVQR model on AD1 data set with different noise 
variance σ. For this, we have fixed the number of training data points to 500. The ν parameter in the proposed ν-SVQR 
was fixed to 0.4. Other parameters were also fixed. Table 3 lists numerical results obtained by the proposed ν-SVQR 
model on AD1 data set with different noise variance σ for several τ values. Figure 5 illustrates the numerical results 
listed in Table 3 well for some τ values. The following inferences can be easily drawn from numerical results presented 
in Table 3 and Figure 5.
(a)	 Irrespective of values of τ, as the noise variance σ increases, the ν-SVQR model accordingly increases the width of 

the asymmetric ϵ-insensitive zone.
(b)	 Irrespective of values of σ, ν is the upper bound on fraction of errors and the lower bound on fraction of support 

vectors in the proposed ν-SVQR model.
(c)	 As the noise variance σ increases, the RMSE obtained by the ν-SVQR model increases.
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                                                                                                                     (d)

Figure 3. Asymptotic behavior of ν-SVQR model for (a) τ = 0.1 (b) τ = 0.3 (c) τ = 0.1 and (d) τ = 0.7
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Figure 4. Automatic adjustment of the width of the ϵ-insensitive zone in the proposed ν-SVQR model
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Table 3. Performance of the proposed ν-SVQR with different values of noise variance σ

τ σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

ϵ 0.02 0.04 0.05 0.07 0.09 0.11 0.12 0.14 0.16 0.18

Error 0.39 0.39 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39

SV 0.41 0.41 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.42

RMSE 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08

0.7

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϵ 0.01 0.03 0.04 0.06 0.07 0.09 0.10 0.12 0.13 0.15

Error 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

SV 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

RMSE 0.00 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05

0.5

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϵ 0.01 0.03 0.05 0.06 0.07 0.09 0.10 0.12 0.13 0.15

Error 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

SV 0.41 0.42 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41

RMSE 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04

0.3

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϵ 0.01 0.03 0.05 0.07 0.08 0.10 0.11 0.13 0.15 0.16

Error 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

SV 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

RMSE 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.06

0.1

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϵ 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Error 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

SV 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

RMSE 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Experiment 4

As stated in Remark 5.4, the proposed ν-SVQR model is similar to the ϵ-SVQR model in the sense that any 
solution ( , )w b  obtained by the proposed ν-SVQR can also be obtained by the ϵ-SVQR. But, the proposed ν-SVQR 
model has the capability of adjusting the ϵ-insensitive zone according to the variance present in the data. For realizing 
this direct benefit of the proposed ν-SVQR model over the ϵ-SVQR model, we perform the following experiment.

We generate 500 training data points of the AD2 data set where response points were polluted with noise from 
U(−0.1, 0.1). For predicting the τ = 0.3 quantile, we have tuned the parameters of ϵ-QSVR as well as the proposed 
ν-SVQR model. We have found that at ϵ = 0.1 and C = 20, the ϵ-QSVR model obtains the minimum RMSE of 0.0057. 
The proposed ν-SVQR model obtains the RMSE value 0.0056 with parameters ν = 0.5 and 02 500.C = ∗  The ν-SVQR 
model obtains the asymmetric ϵ tube of width 0.0074. Now, with the same parameters setting in both ϵ-QSVR and 
ν-SVQR models, we increase the variance present in the noise of AD2 data set to U(−5, 5). The ϵ-SVQR model 
which has a fixed ϵ value could obtain the RMSE 0.2168. But, the ν-SVQR model automatically adjusts the width of 
asymmetric ϵ-tube to 0.3734 and can obtain the RMSE value 0.1840. The estimate obtained by the ϵ-SVQR and the 
proposed ν-SVQR model on AD2 data set with different noise variance has been well illustrated in Figure 6. It verifies 
our claim that the proposed ν-SVQR model has the capability of automatically adjusting the asymmetric ϵ-insensitive 
zone.
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Figure 5. The proposed ν-SVQR model with different noise variance σ for (a) τ = 0.1 (b) τ = 0.3 (c) τ = 0.7 and (d) τ = 0.9
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                                                                                                                      (a)

    
                                                                                                                      (b)

Figure 6. The ϵ-SVQR model (left) fails to adjust the total width of the asymmetric ϵ-insensitive tube with the increase in noise variance. The 
proposed ϵ-SVQR model (right) adjusts the total width of the asymmetric ϵ-insensitive tube according to the increase in noise variance and hence can 

obtain a better estimate

Experiment 5

The above experiments are enough to empirically verify the claims made in this paper. But, we still want to check 
the performance of the ν-SVQR model on real-world data sets. For this, we have performed the experiments with the 
Servo (167×5) data set which is taken from the UCI repository [37]. We have used 80% of this data set for training the 
proposed ν-SVQR model and the rest of the data points were used for the testing. The 100 random trials have been used 
to obtain the error Eτ and sparsity. Table 4 shows the error obtained by the proposed ν-SVQR for different values of τ 
with different values of ν. Table 5 shows the sparsity obtained by the proposed ν-SVQR model for different values of ν 
with different τ values. It can be observed that irrespective of values of τ, the sparsity decreases with an increase in the ν 
value.
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Table 4. Error Eτ obtained by the proposed ν-SVQR model with different values of ν for different τ values

ν/τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.174 0.445 0.464 0.401 0.316 0.222 0.129 0.056 0.054

0.15 0.169 0.403 0.452 0.399 0.316 0.221 0.129 0.056 0.055

0.20 0.040 0.248 0.395 0.387 0.315 0.220 0.129 0.056 0.057

0.25 0.037 0.062 0.187 0.313 0.300 0.217 0.129 0.056 0.059

0.30 0.040 0.073 0.087 0.171 0.251 0.210 0.129 0.056 0.059

0.35 0.043 0.072 0.066 0.092 0.160 0.195 0.127 0.056 0.060

0.40 0.043 0.069 0.069 0.069 0.094 0.161 0.123 0.056 0.061

0.45 0.044 0.059 0.067 0.067 0.076 0.112 0.119 0.056 0.062

0.50 0.045 0.055 0.062 0.069 0.071 0.076 0.116 0.057 0.062

0.55 0.043 0.062 0.062 0.067 0.081 0.085 0.074 0.061 0.067

0.60 0.038 0.066 0.062 0.068 0.083 0.070 0.072 0.060 0.067

0.65 0.038 0.058 0.059 0.067 0.081 0.085 0.074 0.061 0.067

0.70 0.038 0.057 0.060 0.069 0.082 0.092 0.079 0.065 0.070

0.75 0.038 0.054 0.061 0.070 0.082 0.094 0.081 0.072 0.070

0.80 0.038 0.054 0.061 0.074 0.082 0.092 0.082 0.072 0.073

0.85 0.038 0.055 0.064 0.071 0.081 0.091 0.081 0.067 0.075

0.90 0.041 0.054 0.064 0.068 0.084 0.085 0.078 0.068 0.075

0.95 0.040 0.055 0.065 0.071 0.082 0.083 0.072 0.068 0.074

1.00 0.040 0.055 0.067 0.071 0.078 0.084 0.073 0.069 0.073

Table 5. Sparsity obtained by the proposed ν-SVQR model with different values of ν for different τ values

ν/τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 89.47 88.72 89.47 89.47 89.47 89.47 88.72 88.72 89.47

0.15 83.46 82.71 84.21 83.46 83.46 83.46 84.21 84.21 84.21

0.2 78.95 78.95 79.70 78.20 78.95 78.95 79.70 78.95 78.95

0.25 74.44 74.44 73.68 74.44 73.68 73.68 72.93 73.68 74.44

0.3 69.17 68.42 69.17 69.17 69.17 69.17 69.17 69.17 69.17

0.35 63.91 63.91 63.91 63.91 63.91 63.91 63.16 63.91 64.66

0.4 57.89 57.89 57.89 57.89 58.65 58.65 59.40 59.40 58.65

0.45 54.14 52.63 53.63 53.38 52.63 54.14 54.14 54.14 54.14

0.5 48.87 48.12 48.87 48.12 47.37 48.12 49.62 48.87 48.12

0.55 42.86 42.86 43.61 43.61 43.61 44.36 42.86 43.61 43.61

0.6 38.35 38.35 37.59 36.84 38.35 38.35 38.35 39.10 39.10

0.65 33.08 33.08 33.83 32.33 33.08 32.33 33.08 34.59 34.59

0.7 27.82 29.32 27.07 27.82 27.07 27.82 27.82 29.32 29.32

0.75 22.56 22.56 21.80 22.56 23.31 22.56 23.31 23.31 24.06

0.8 17.29 17.29 17.29 18.80 17.29 16.54 18.05 18.80 18.80

0.85 13.53 12.03 12.03 11.28 13.53 12.78 12.03 13.53 14.29

0.9 8.27 9.02 8.27 8.27 7.52 7.52 7.52 8.27 9.02

0.95 3.01 2.26 3.76 3.01 3.01 3.01 3.01 3.76 4.51

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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7. Conclusion
In this paper, we propose a novel ν-SVQR model which improves the existing ϵ-SVQR model [7]. The ϵ-SVQR 

model can obtain an efficient prediction of the conditional quantile by considering an asymmetric ϵ-insensitive zone 
around the data points. But for this, it requires a good choice of the value of ϵ. A bad choice of the value of ϵ can lead to 
poor prediction in ϵ-SVQR. Our proposed ν-SVQR model can automatically obtain a suitable asymmetric ϵ-insensitive 
zone around data points according to the variance present in data for conditional quantile estimation. For this, the 
proposed ν-SVQR model trades off the size of the ϵ-insensitive zone against the model complexity and empirical risk 
via the user-defined parameter ν. We have briefly derived the different properties of the ν-SVQR model using the KKT 
condition of the optimization problem of the ν-SVQR model. In the ν-SVQR model, the user-defined parameter ν is the 
upper bound of the fraction of errors and the lower bound of the fraction of Support Vectors. Further, we have carried 
out extensive numerical experiments on several simulated and real-world data sets and verified our claims regarding the 
properties of the ν-SVQR model.

The ν-SVQR model is not suitable for large-scale data set processing, as it requires the solution of a QPP, which 
involves 2l constraints. In the future, we would like to solve the QPP of the ν-SVQR model using efficient variants of 
the stochastic gradient descent method which may enable the proposed model to deal with online and large-scale data 
efficiently. We have planned to use the variants of the metaheuristic algorithms to tune the parameters of the ν-SVQR 
model in the future. We have also planned to check the performance of the ν-SVQR model in wind hybrid models for 
obtaining the probabilistic forecast of wind energy.
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