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Abstract: Machine Learning (ML) and Evolutionary Computing (EC) are the two most popular computational 
methodologies in computer science to solve learning and optimization problems around us, respectively. It is of research 
interest in the literature, for exploring these two methodologies and to formulate algorithmic frameworks with ‘EA for 
ML’ and ‘ML for EA’ where EA stands for Evolutionary Algorithm. The objective of this paper is on exploring this 
dimension of research. The Traveling Salesman Problem (TSP) is one of the NP-hard (nondeterministic polynomial 
time hard) problems in combinatorial optimization problems. The solution for a TSP is the shortest path covering all the 
nodes in a given city. This paper compares two algorithms, “Genetic Algorithm (GA)” of the EC domain and “Epsilon-
Greedy Q-Learning Algorithm (EQLA)” of the ML domain on solving TSP. The detailed design methodology involved 
in both these algorithms is discussed in this paper. The experiments are carried out on two different data sets (random 
and ATT48) to compare the speed and accuracy of the algorithms. The comparative results reveal that the GA could 
solve the TSP more effectively than EQLA. The obtained inferences along with the limitations are presented in this 
paper.

Keywords: GA, EA, reinforcement learning, EQLA, TSP

1. Introduction
The Evolutionary Algorithms (EAs), the potential optimization algorithms of the Evolutionary Computing (EC) 

paradigm, use the mechanisms drawn from nature to solve optimization problems by simulating the actions behind the 
principle of survival of the fittest. The EAs are widely used as a ready-made tool for solving a variety of benchmarking 
problems and real-world optimization problems. Though the applicability of the EAs started with solving optimization 
problems, there are research attempts and success stories of extending them to solving learning problems too.

The Machine Learning (ML) paradigm of computer science provides us with a large list of algorithms for solving 
the challenging prediction problems around us [1-3]. These algorithms imitate how human learns and increases the 
accuracy of prediction over the experience [4, 5]. The research attempts on integrating ML and EA paradigms are 
showing an increasing trend in the literature. Towards this, this paper is a research attempt to showcase how the same 
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problem can be modeled and solved as an optimization problem as well as a learning problem. 
The Genetic Algorithm (GA), a subset of EA, is widely used for solving complex optimization problems that 

involve single or multi, or many objective functions [6-8]. Epsilon-Greedy Q-Learning Algorithm (EQLA) is a type 
of Reinforcement Learning (RL) algorithm. The EQLA is more suitable to solve the optimization problem than other 
reinforcement models. This paper solves the Traveling Salesman Problem (TSP) by GA and EQLA, along with an 
attempt to study the working of a bio-inspired optimization algorithm and a traditional ML algorithm with thorough 
comparison and formulating valuable inferences. 

The remaining part of the paper is organized as follows. Section 2 presents the work related to solving TSP by 
using GA and RL. Section 3 explains the design of the experiments carried out in this study. The results recorded and 
the inferences obtained are presented in Section 4, and finally, Section 5 concludes the paper. 

2. Related work
A few recent studies that solve TSP using GA and RL conducted by various authors have been summarised in this 

section. The TSP is solved based on two different models using GA, by employing the mutation and elitism procedures 
presented in [9]. The results show that the model which uses 0 and 1 probabilities shows better performance than the 
other model, which is based on different probabilities when traversing from one node to another. In [10], the authors 
have used a new crossover technique that has the ability to calculate an approximate optimal path for solving TSP using 
GA and compare it with the existing algorithm - Sequential Constructive Crossover (SCX). It is found that in terms of 
cost and time, the new crossover technique is better compared and hence provides an optimal solution. 

To increase population diversity and optimize mutation characters, an improved GA combining random crossover 
and dynamic mutation is proposed in [11]. The Traditional GA (T-GA), Adaptive Crossover Probability Genetic 
Algorithm (ACP-GA), Improved Selection Genetic Algorithm (IS-GA), and Random Crossover and Dynamic Mutation 
Genetic Algorithm (RCDM-GA) are employed to solve the classical TSP. The comparison of the simulated results of 
four algorithms demonstrates that the convergence rate and optimal solution of RCDM-GA are better compared to those 
of the other algorithms. The study presented in [12] explains the ability of GA to optimize in order to arrive at a viable 
solution for TSP. According to the authors, heuristic methods and genetic approaches are the best ways to solve TSP, 
and different possible combinations of selection, crossover, and mutation methodologies can be used to find multiple 
optimal solutions. One such combination of local optimization heuristics (reduces the search domain) and phenotype 
GAs (eliminates the generation of invalid tours) is followed in [13] and applied to TSP. An efficient GA for solving the 
Generalized Traveling Salesman Problem (GTSP) has been presented in [14] based on local connections and global 
connections. 

The Biased Random-Key Genetic Algorithm (BRKGA) is applied to the TSP in [15], it is explained that BRKGA 
is an efficient methodology for solving problems involving combinatorial optimization, but it needs its parameters tuned 
to ensure that the algorithm’s intensification and diversification are balanced. In [16], for solving TSP, the authors used 
RL, specifically Q-Learning, as a ML technique in Adaptive Operator Selection (AOS) inside the Iterated Local Search 
(ILS) meta-heuristic. The ILS incorporates multiple local searches and perturbation technicians, and Q-Learning has 
been incorporated into the ILS algorithm on two different levels: (1) Choosing suitable local search operators and (2) 
Choosing suitable perturbation operators at every phase of the search process. RL is also a potential method to work out 
the Traveling Salesman Problem With Refuelling (TSPWR). [17] explains that an RL-TSPWR algorithm and statistical 
methods are applied for tuning RL parameters (reinforcement function, α, ε, and γ).

In [18], the authors have presented a hybrid system that employs a RL agent to improve the TSP performance 
of a GA. At each generation, the agent employs Q-Learning, which influences the selection of both crossover and 
mutation operators, as well as the selection of individuals for reproduction. This hybrid system learns fasters and results 
in an overall better solution. While examining the connection between the best possible mutation rate and problem 
complexity, the authors of [19] present that they are inversely proportional. A learning-based method for solving the 
Multiple Travelling Salesman Problem (MTSP) is presented in [20], a two-stage approach is implemented where RL 
is used to train the model and a standard optimization technique is used to resolve the single-agent TSP related to each 
agent. 

In [21], the author has solved TSP using GA and compared the solution with NNA (Nearest Neighbor Algorithm) 
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and the Simulated Annealing (SA) technique. The author also presents that GA performs better than NNA and SA. 
Similarly, the study presented in [22] explains that solving TSP using GA and comparing it with NNA has proven 
that GA outperforms the NNA solution when the number of cities is increased. The author in [23] explains that an ant 
colony TSP optimization approach performs better when compared to NNA. In [24], dynamic programming with fuzzy 
logic is used to solve TSP and mentions that a multivariate problem can be solved in simple ways by decomposing it. 
The approach also explains that the fuzzy logic used is also able to perform appreciably well in comparison with other 
optimization algorithms

After analyzing the prior works, this paper compares the performance of GA and RL in solving TSP toward 
formulating novel integrated frameworks of GA and RL. 

3. Design of experiments
This paper investigates and compares the GA alongside EQLA on an optimization problem like TSP. In TSP, 

given a set of cities with coordinates, a salesman needs to choose the shortest path to cover all the cities and return 
to the initial city. The problem could be solved through the brute-force method, but the complexity of the problem 
increases and requires more time to obtain the solution. To overcome this limitation and to obtain optimal results that 
are computationally effective and achieved quickly, algorithms such as the GA and EQLA are chosen to obtain a quasi-
optimal solution. The next subsection provides a short summary of the algorithmic structures of GA and EQLA used for 
solving TSP.

3.1 Structure of GA

The GA is well known for providing fast and optimal solutions. It solves complex optimization problems by 
iterative random search of solutions. GA works based on evolutionary principles inspired by nature. GA approaches 
the TSP as an optimization problem by evaluating the routes and improving the search with various techniques. The 
working methodology is as in Figure 1.

                          

Figure 1. A simple structure of GA

The GA model starts with a random set of the population (routes). This set of routes has a predefined size. For each 
individual in the population set, the evaluation is based on its fitness value. In TSP, the fitness value is considered to 
be the inverse of the distance taken to traverse through all the cities in the given path. A lower distance value implies a 
higher fitness score and a higher distance value implies a lower fitness score. The population set is then ranked based 
on these fitness values ranging from the scores with the highest values to the least. This ranked set of individuals is 
used for the selection process. In selection, a particular number of best individuals (elitism) are passed directly to the 
mating pool as shown in Figure 2. With this, the best performing routes are automatically carried over to the next 
generation, ensuring the routes with possible solution set persists. A mating pool is a collection of parents that are used 
for generating a new population for the next generation. The other individuals (except the elite individuals) are made to 

Random population Selection Mating pool

CrossoverMutationRandom population
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crossover and mutate. 

 

Initial generation Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8 Route 9 Route 10 Route 11 Route 12

Next generation

25% elitism

New routesRoute 1 Route 2 Route 3
  

Figure 2. A sample for elitism in GA

Generally, in the crossover, two random parents are chosen and a crossover point is chosen. The parents are then 
spliced and joined together to form a new child. However, in TSP, since all the cities must be visited only once, a 
random subset of parent 1 is considered and the remaining genes (cities) are filled from parent 2 without any duplication 
of the cities present in the subset of parent 1, forming a new child (new route) as depicted in Figure 3.

                

Parent 1 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 1

6 7 8

2 3 4 5 9 6 7 8 1

Parent 2

Child

Figure 3. A sample GA crossover

The mutation is carried out for the children produced as a result of crossover. It acts as an important function in 
GA by introducing novel routes and the possible chance of local convergence is ruled out. For every individual, based 
on the specified low probability of cities in a route, swap mutation takes place resulting in the swapping of cities in a 
route. These distinct individuals along with the best individuals from the previous generation form a new population set 
and then the process is repeated. In this experiment, a population of 100 routes has been considered, for the algorithm to 
work on various individuals at once, and the elitism value is kept as 25% of the population size. The mutation value was 
set to 0.001 based on [19]. 

3.2 Structure of EQLA

Although TSP is an optimization problem, it is converted into an RL problem by mapping the elements in the 
problem to the parameters involved in the algorithm. The cities in the problem are denoted as states and, the agent at 
each state can perform certain actions which are represented in the Q-Table as state-action pairs. In each state, the agent 
chooses any of the possible actions and receives a reward according to that action. The reward is the negative of the 
distance between the current state and the next state. The main aim of the agent is to maximize the reward obtained. So, 
maximizing the reward will naturally decrease the distance and hence solve the TSP. Since Q-Learning is a model-free 
RL algorithm, it works on the given toy problem through a trial-and-error approach. The working of the algorithm is 
depicted below.

Q-Table Generation
Input: alpha: learning rate, gamma: discount factor, epsilon: random number
Output: A Q-Table containing Q(S, A) pairs defining estimated optimal policy 
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1. Initialize Q(s, a) table arbitrarily
/*For each step, calculate Q-value and update the Q-Table */
2. For each step:
2.1 Initialize state S; /* Initialize current city S /*
2.2 For each step in iteration do

Do
/* Choose the next city from the current city using the epsilon-greedy policy */ 
2.2.1 A ← Select action(Q, S, epsilon);
/* Take action A, then observe reward R and next state S; */
2.2.3 Q(s, a) = Q(s, a) + learning rate*[R + gamma*max Q(s', a) - Q(s, a)]; 
2.2.4 S = S';

while s is not terminal;
end

end

Epsilon-Greedy Action Selection
Input: Q-Table generated so far, S current state 
Output: Best route
Function Q-Learning (Q, S, epsilon)
1. N ← uniform random number between 0 and 1;
2. If N < epsilon then

2.1 A ← random action /* update Q-Table if best found so far is improved */
else
2.2 A ← current best action (best route achieved)

return selected action A;

The EQLA consists of three parameters - Alpha, Gamma, and Epsilon. Alpha is the learning rate and is a real-
valued variable in the range of [0,1]. The learning rate determines the extent of updating the Q-Table. Here, 0 makes the 
model not learn anything and 1 makes the model learn only from the most recent action. Gamma or discount factor is a 
parameter that determines the importance of the reward provided in each epoch, valued in the range of [0,1]. A Gamma 
value of 0 makes the model focus only on short-term rewards and 1 makes the model aim for high rewards in the long 
run. For indeterministic problems such as TSP, without a terminal state, having a Gamma value of 1 may lead to infinite 
reward and the solution might not converge.

Epsilon hyperparameter is based on the randomness proposed to the model where it explores or exploits based on 
the value. When the Epsilon value is equal to 0, the agent uses the previously obtained knowledge and when the value is 
equal to 1, the model explores and then arrives at a solution. So, the Epsilon is chosen (close to zero) so it never settles 
with the local optimal solution.

The first step of the algorithm is to initialize the parameters. The Q-Learning algorithm uses a state-action table 
called Q-Table. The Q-Table contains all the possible states and the corresponding actions possible at each state. At each 
epoch, the agent is at a certain state and the possible actions that can be performed from that state are given by the Q-Table. 
The Q-Table is initialized to a 2-dimensional matrix of dimensions N × N where N represents the number of cities in 
the defined TSP. In each epoch, the agent selects an action from the available set of actions based on the epsilon-greedy 
approach.

In the epsilon-greedy algorithm, there is an exploration vs exploitation trade-off. The agent can either perform 
exploration and aim for higher rewards as time progresses or can exploit based on the knowledge gained and can aim 
for short-term rewards. This trade-off can be addressed using the Epsilon value and is demonstrated in Figure 4. 
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Start

Exploration Exploitation

Select random 
action

Select best known 
action

ε 1 - ε

Figure 4. Exploration-exploitation trade-off 

The parameter Epsilon is used to overcome the exploitation vs. exploration trade-off. The epsilon-greedy approach 
takes a random value between 0 and 1. If the generated value is less than Epsilon, then the model performs exploration. 
If the generated value is greater than Epsilon, then the agent performs exploitation. This algorithm returns the best action 
that can be performed at a given stage. After attaining the best possible action, the Q-Learning algorithm performs an 
update of the Q-Table. The updating of the Q-Table is based on the Bellman equation which is given by Equation (1), 
where the variables St and At refer to current state and current action respectively and Q (St, At) represents the Q-Table 
corresponding to state-action pair for state St and action At. Other parameters such as α denote the learning rate, γ refers 
to the importance of reward, and R is the reward for performing action At form state St.

                                              Q(St, At) ← Q(St, At) + α [Rt + 1 + γ max Q(St + 1, a) – Q(St, At )]                                          (1)

The Bellman Equation takes into account the current value from the Q-Table and increments it with a value 
determined by the parameters of the model such as learning rate (α) and discount factor (γ). After each epoch, the 
distance is calculated and stored in an array. The best of the distances is obtained from the array after the completion of 
the pre-set number of epochs.

4. Results and discussions
In the view of comparing and evaluating the algorithms extensively, two data sets were considered. One is a 

randomly generated x and y coordinates and the other consisting a set of 48 state capitals of the United States (ATT48 – 
obtained from Traveling Salesman Problem Library (TSPLIB) [25]) and is visualized in Figure 5. 
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Figure 5. Visualization of ATT48 data set

GA initially tries to find the route with the highest fitness value for each generation from a randomly generated 
population and then improvises the search based on elitism, mutation, and crossover. A possible error of converging 
in local minima is avoided by this method. However, the algorithm is run for about 10 iterations and the average of all 
iterations is considered as the obtained solution for a fair comparison with the Q-Learning technique. 

The distance vs. generation graph for the last iteration showcases the development in search and fitness values of 
the algorithm over generations. The results obtained from data sets using GA are tabulated and graphed. The results (the 
initial distance and optimized distance) for the randomly generated data set are presented in Table 1. For a sample run, 
over 500 generations, the convergence of the shortest path distance is visualized in Figure 6. Similarly, the results and 
the convergence graphs obtained for the ATT48 data set are presented in Table 2 and Figure 7, respectively.

Table 1. Results of GA solving TSP with a random data set

Iteration Initial distance Optimized distance

1 1,456.13 551.99

2 1,456.13 513.84

3 1,456.13 513.84

4 1,456.13 513.84

5 1,456.13 513.84

6 1,456.13 513.04

7 1,456.13 503.77

8 1,456.13 503.77

9 1,456.13 496.53

10 1,456.13 496.53

Average value 1,456.13 512.1
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Figure 6. Convergence graph of GA for TSP with a random data set

Table 2. Results of GA solving TSP with the ATT48 data set

Iteration Initial distance Optimized distance

1 129,870.83 37,136.8

2 129,870.83 37,136.8

3 129,870.83 37,136.8

4 129,870.83 37,136.8

5 129,870.83 37,136.8

6 129,870.83 37,136.8

7 129,870.83 37,136.8

8 129,870.83 37,136.8

9 129,870.83 37,136.8

10 129,870.83 36,535.61

Average value 129,870.83 37,076.68

                                              

Figure 7. Convergence graph of GA for TSP with ATT48 data set

It is observed from the experimental results that the GA performs well and improves the solutions in every 
generation. The time taken to find the solution in each generation is found to be minimal and the algorithm also manages 
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to find solutions all over the search space. The implemented EQLA, initially, tries to obtain the Q-Table with the best 
routes to the cities (minimum distance). The concept of RL is that the agent tries to discover its environment which 
purely depends on trial and error. To overcome the exploration-exploitation trade-off, a variety of Epsilon values are 
considered for better understanding and to compare the algorithm with GA. Table 3 presents the distance value obtained 
for each Epsilon value considered, for the TSP with a randomly generated data set. Here, the algorithm is run for 10 
iterations, and an average of all the iterations is considered as the obtained solution. Figure 8 indicates the reduction in 
the distance as the number of iterations increases (depicting distance vs. the number of iterations). Similarly, the results 
obtained by solving the TSP with the ATT48 data set using the EQLA are presented in Table 4 and Figure 9.

Table 3. Results of GA solving TSP with a random data set

Iteration Epsilon = 0 Epsilon = 0.2 Epsilon = 0.5

1 551 576 554

2 521 535 575

3 536 568 549

4 540 549 554

5 529 537 577

6 544 535 545

7 519 505 559

8 510 541 538

9 506 539 558

10 532 536 535

Sum 5,288 5,421 5,544

Average 528.8 542.1 554.4

      

Figure 8. Convergence graph of EQLA for TSP with a random data set
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Table 4. Results of EQLA solving TSP with ATT48 data set

Iteration Epsilon = 0 Epsilon = 0.2 Epsilon = 0.5

1 41,876 44,768 45,392

2 45,537 46,127 47,634

3 46,678 44,969 49,101

4 41,382 44,707 48,155

5 45,401 45,840 46,887

6 44,727 46,395 42,475

7 41,922 44,325 45,736

8 44,540 46,464 45,830

9 41,693 45,834 44,487

10 43,317 44,719 45,489

Sum 437,073 454,148 461,186

Average 43,707.3 45,414.8 46,118.6

    

Figure 9. Convergence graph of EQLA for TSP with ATT48 data set

The comparative study carried out on comparing GA and EQLA in solving the classical TSP with two different 
data sets (random and ATT48), reveals that EQLA consumes more time and memory in comparison with GA. It is also 
inferred that the solutions found by EQLA are less accurate and GA finds more optimal solutions.

5. Conclusions
This work is an attempt to compare and understand the working of EC and ML approaches for solving an 

optimization problem and the following points are considered to be the highlighted contributions of this paper.
•	 Solving the optimization problem (TSP) through GA, a part of EAs, and obtaining the optimal result.
•	 Modeling optimization problem as a learning problem and solving with EQLA algorithm.
•	 Comparing and studying the inferences obtained from the solutions provided by both algorithms.
The GA performs well in terms of fastness in obtaining a quasi-optimal solution whereas the EQLA works by 

consuming a considerable amount of running time than GA and failing to obtain the optimal solutions near to that of 
GA. The experimental results obtained along with the inferences gained are presented in this paper. This study observed 
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that GA is an effective approach for solving the GTSP. However, the limitation of GA is that the model might find it 
difficult to obtain a near-optimal solution when the number of cities in TSP becomes bigger. But, it can still manage to 
produce outputs in minimum time. 

This study can be enhanced by hybridizing these two algorithms (GA and EQLA) to obtain cost-effective optimal 
solutions by leveraging the benefits of both algorithms. 
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