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Abstract: Nowadays, the emergence of new technologies gives rise to a huge amount of data in different fields such as 
public transportation, community services, scientific research, etc. Due to the aging population, healthcare is becoming 
more important in our daily life to reduce public burdens. For example, manually archiving massive electronic 
medical files, such as X-ray images, is impossible. However, precise classification is essential for further work, such 
as diagnosis. In this report, we applied a spectral clustering algorithm to classify chest disease X-ray images. We also 
employed the “pure” K-means algorithm for comparison. Three types of indexes are used to quantify the performances 
of both algorithms. Our analysis result shows that spectral clustering can successfully classify chest X-ray images based 
on the presence of disease spots on the lungs and the performance is superior to “pure” K-means clustering.
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1. Introduction
Nowadays, chest diseases have become a significant threat to human health [1]. These diseases manifest in 

various types, each with its own set of symptoms and severity levels. To accurately diagnose chest diseases, medical 
professionals rely heavily on diagnostic imaging techniques, with X-ray being the most commonly used due to its speed 
and affordability [2]. X-ray has become a primary tool for screening and identifying various chest ailments such as 
pneumonia, pneumothorax, and masses [3].

Among these diseases, about half a billion persons are suffered from pneumonia and about 4 million people die 
from it per year [4]. For example, lung cancer is one of the malignant tumors, which has the highest incidence and 
mortality in the world, since the 5-year survival rate of the patient is around 16% [5]. Early diagnosis and treatment 
can significantly reduce mortality resulting from chest diseases [6]. However, understanding chest X-ray needs a lot 
of professional knowledge. So far, X-ray images are typically explained by radiologists [7]. But misdiagnosis always 
happens, because of the diverse chest pathological features and the potential fatigue or lack of experience of radiologists 
[8]. Therefore, there is a crucial need to develop chest X-ray-assisted diagnostic algorithms that can aid radiologists in 
providing timely and effective treatment to patients with chest diseases [9]. 

Recently, the emergence of artificial intelligence techniques has attracted popularity worldwide because they 
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can be applied in the biomedical fields, including skin cancer diagnosis, standard plane detection and localization in 
fetal ultrasound, lung nodule detection, etc. [10]. At present, this technology has made some progress in chest disease 
diagnosis [11]. However, artificial intelligence-based diagnosis technique still has many obvious drawbacks. For 
example, these include low-level feature recognition, small proportion of disease spots, and changeable disease location 
between the chest disease and the remaining normal area, compared with those from real images, due to the coarse-
grained recognition [12]. As a consequence, it is hard to make connections between features, and finding the subtle 
traits that fully characterize the object is not straightforward, so the fine-grained classification of chest diseases is very 
challenging due to the difficulty of finding discriminative features. it is also difficult to find the most representative 
features for fine-grained classification of chest diseases [13, 14]. 

On the other hand, the imbalance between normal and disease X-ray images makes it challenging to design 
accurate diagnostic algorithms. This can lead to misdiagnosis, as the gradient direction tends to favor normal X-ray 
images [15, 16]. Current algorithms can only detect whether an image is diseased or not, but have difficulty identifying 
the specific type of disease and differences between them [17]. To conquer those problems, binary cross-entropy is used 
in this study to balance the number of disease and normal X-ray images and compensate for the loss function [18].

Among graph mining techniques for imaging classification, clustering algorithms are extraordinarily critical, since 
they can categorize objects into different groups according to their similarities. Traditional clustering algorithms, such 
as K-means, are limited by their spherical assumptions, which can lead to local optima. Spectral clustering has rapidly 
developed in recent years to compensate for these limitations by leveraging the eigenvalues of the similarity matrix [19-
21].

Fiedler initialized spectral clustering algorithm, unlike traditional clustering algorithms, spectral clustering does not 
rely on shape assumptions and can find the global optimum [22]. It has been widely used in very large-scale integration 
(VLSI) design, load balancing, parallel computing, and sparse matrix partitioning. Spectral clustering is advantageous 
in both theoretical and practical applications, and it can be applied to any distribution pattern without considering 
dependency assumptions [23, 24]. In the biomedical field, spectral clustering can be used for image segmentation, 
including classifying normal and abnormal medical images such as pneumonia X-ray images. If successful, the 
algorithm could be applied to other chest diseases and other medical imaging modalities like magnetic resonance 
imaging (MRI) and ultrasound images.

Previous articles have shown that researchers are focusing on image classification. We plan to use the spectral 
clustering algorithm to classify normal and abnormal medical images, starting with pneumonia X-ray images and 
expanding to other chest diseases such as infiltration, effusion, mass, and nodule [25, 26]. The algorithm will also be 
applied to other medical imaging modalities like MRI and ultrasound images. These automatic classification models can 
be used as a pre-screening step to save time and facilitate doctors in making diagnoses.

In this paper, we will present an overview of the relevant research related to our topic of interest, followed by 
a detailed description of our data and the methodology we will use. Then, we will discuss the data extraction and 
preprocessing steps, the application of various models supported by theoretical underpinnings, and a comparative 
analysis of the performance of these models. In the final section, we will provide a comprehensive evaluation of the 
results obtained and highlight potential areas for future research.

2. Related research
Image classification is an important task in the field of medical imaging, particularly for X-ray images. Over 

the years, various techniques and methods have been developed to classify X-ray images accurately. One of the most 
popular approaches for X-ray image classification is deep learning. Among those deep learning models, numerous 
studies have investigated the performance of convolutional neural networks (CNNs). For example, Rajpurkar et al. 
proposed a deep learning algorithm that achieved state-of-the-art performance in classifying 14 different thoracic 
diseases using X-ray images [27]. 

Transfer learning has also been investigated for X-ray image classification. It involves utilizing pre-trained models 
on large data sets to extract features. For instance, Zhang et al. used a transfer learning approach by utilizing a pre-
trained VGG-16 model for classifying chest X-ray images into normal and abnormal categories. Their study showed that 
the approach achieved high accuracy rates of over 90% [28].
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In addition to utilizing the aforementioned deep learning techniques, traditional machine learning methods have 
also been studied for X-ray image classification. For instance, Hamed et al. developed a hybrid approach that combined 
histogram equalization with machine learning algorithms, such as K-Nearest Neighbor (KNN), Decision Tree, Support 
Vector Machine (SVM), etc. [29].

Overall, there have been significant developments in X-ray image classification using various techniques, ranging 
from deep learning to traditional machine learning methods. These studies have demonstrated high accuracy rates, which 
can be beneficial for early diagnosis and treatment of various diseases. However, there is still scope for improvement in 
terms of the different methods and their accuracy, as well as expanding the range of diseases that can be classified using 
X-ray images.

3. Methodology
3.1 Dataset  

The dataset in our study includes chest X-ray images that have been categorized as normal or abnormal, with the 
abnormal category being caused by pneumonia (as shown in Figure 1). To ensure the accuracy of the analysis of chest 
X-ray images, a quality control process was implemented where all radiographs were initially screened to remove any 
scans that were deemed unreadable or of low quality. The images were evaluated and diagnosed by expert physicians 
before being cleared for use in the artificial intelligence (AI) system [30]. The dataset is quite large, with a total size 
of 1.15 GB and thousands of images. In order to improve efficiency and save time, a subset of 200 normal and 200 
pneumonia images were randomly selected for further processing. The data can be downloaded from Kaggle, https://
www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia [31].

                                            

Figure 1. Normal (left) and abnormal (right, pneumonia) chest X-ray images

3.2 Classification   
3.2.1 Spectral clustering classification

The primary approach of the whole spectral clustering classification procedure is depicted in the flowchart as 
shown in Figure 2. First, all randomly selected images are imported and then subjected to grayscale conversion and 
resizing as spectral clustering has specific requirements for the image name, grayscale, and size of images. These 
three steps are necessary for preparing the images for spectral clustering. Next, after applying spectral clustering 
classification, the classified images are restored into two different folders. 

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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Chest X-ray images

Gray conversion

Spectral clustering 
classification

Resize images

Images restoration

Figure 2. The flowchart of spectral clustering procedure

In spectral clustering, images are converted into nodes in a high-dimensional space. The distance between nodes 
determines their edge weights.

Once the nodes are created, a distance matrix is computed and used to generate the diagonal degree matrix. This 
degree matrix is then used to compute the Laplacian matrix, which is a key step in the spectral clustering algorithm. The 
Laplacian matrix helps to identify clusters of images based on their similarities and differences, and ultimately leads to 
the accurate classification of the images.

To find the distance matrix, usually V is used to represent a set of nodes, and use E to represent a set of edges. And 
a graph is G, so G(V, E). Among them, V is the set of all nodes (v1, …, vn). wij is the weight between vi and vj, wij = wji. 
If there is an edge between two nodes, exists wij > 0, otherwise, wij = 0. For any node in the graph, the corresponding 
degree W [Equation (1)] is the sum of all its adjacent edges [32].

In spectral clustering, a distance matrix is obtained by representing nodes as a set V and edges as a set E in a graph 
G(V, E). V represents all nodes (v1, …, vn), and wij is the weight between vi and vj, where wij = wji. If an edge exists 
between two nodes, wij > 0; otherwise, wij = 0. The degree d (Equation (1)) of a node in the graph is the sum of its 
adjacent edge weights, and is used to generate the Laplacian matrix for spectral clustering [32].
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To describe the degrees of all nodes, we can get a n × n matrix of degrees D, which is a diagonal matrix [Equation (2)] 
[33].
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The adjacent matrix is named W [Equation (3)]. It’s also an n × n matrix, the ith row and jth column is wij. Usually, 
we can use the weight among all nodes to construct a m × m similarity matrix, in which ith row and jth column have a 
corresponding weight Wij [34].
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There are three common methods to construct a similarity matrix: epsilon nearest neighbor, KNN, and fully 
connected graph. 

In the epsilon nearest neighbor method, a distance threshold epsilon is set, and the Euclidean distance Sij [Equation 
(4)] is used to evaluate the distance between any two nodes xi and xj [35].

                                                                                    
2

2ij i jS x x= −                                                                                 (4)

In the KNN method, all nodes are traversed using KNN to find their KNNs, and the edge weights wij for these 
neighbors are computed. In a fully connected graph, all nodes have weights greater than zero and are connected to 
each other. Before performing clustering, the Laplacian matrix computation is computed as L = D – W where D is the 
diagonal degree matrix and W is the adjacent matrix described earlier. The Laplacian matrix offers advantages over 
traditional clustering with complex shapes and varying densities in high-dimensional spaces due to the following 
reasons:

(a) It is a symmetric matrix, this can be easily found because both D and W are symmetric matrices.
(b) For any vector f, we have
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(c) The matrix is positive semi-definite and n is all nonnegative real number eigenvalues
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In order to prevent bad results of clustering, it is necessary to limit the size of all sub-graphs. The most common 
way to do this is normalized cut, the formula [36] is
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Based on the basic knowledge of the clustering algorithm, it is clear that clustering can be used on various kinds 
of sample data and converges at global optimal. If the input D = (x1, … xn) contains k1 dimensions after dimension 
reduction and k2 dimensions after clustering, the output is a set of k clusters C(c1, … ck).
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3.2.2 “Pure” K-means clustering classification

To compare the results, “pure” K-means is used to classify the images. The procedure is depicted in the flowchart 
as shown in Figure 3. The procedure is similar to the spectral clustering algorithm, except for the last two steps. Unlike 
spectral clustering, the “pure” K-means algorithm does not require complex computations such as distance matrix and 
Laplacian matrix and it can be imported from sklearn by setting the number of clusters to be 2. The last step involved 
attaching classified labels to the corresponding images, rather than creating two folders to store the classified images 
separately.

                                                                             

Chest X-ray images

Gray conversion

Classification label 
restoration

Resize images

K-means classification

Figure 3. The flowchart of “pure” K-means clustering procedure

3.3 Measurement  

Since clustering is an unsupervised learning, the common supervised learning measurement, such as precision, 
recall, accuracy, etc. based on the confusion matrix, cannot be used in this project. To qualify the performances of 
spectral clustering and “pure” K-means clustering, three types of indexes: silhouette coefficient, Davies-Bouldin index, 
and Calinski-Harabasz index are applied.

3.3.1 Silhouette coefficient

The silhouette coefficient, as shown in Equation (5), is calculated using the mean intra-cluster distance (a) and 
the mean nearest-cluster distance (b). The coefficient is from -1 to 1 with a higher coefficient indicating better cluster 
classification. A coefficient of 0 indicates that the clusters are close to each other, and the classification is poor. A 
negative coefficient indicates some data are assigned to the wrong clusters [37].
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3.3.2 Davies-Bouldin index

The Davies-Bouldin index, as shown in Equation (6), is used to measure the average similarity of each cluster with 
its most similar cluster. The index ranges from 0 to infinity, with a lower value indicating better cluster classification. A 
value of 0 indicates perfect clustering, while a higher value indicates worse clustering [38].

                                                                                1

1 max
k

iji ji
DB R

k ≠=

= ∑                                                                              
(6)

3.3.3 Calinski-Harabasz index

The Calinski-Harabasz index, as shown in Equation (7), is also known as the variance ratio criterion. It measures 
the value of the ratio between the within-cluster dispersion and the between-cluster dispersion. A higher index value 
indicates better cluster separation and classification, while a lower value indicates less distinct clusters [39].

                                                                                 
tr( )
tr( ) 1

k E

k

B n ks
W k

−
= ×

−                                                                             
(7)

where

                                                                         1
( )( )

q

k
T

k q q
q x C

W x c x c
= ∈

= − −∑∑

                                                                         1
( )( )

k
T

k q q E q E
q

B n c c c c
=

= − −∑

4. Experiments and results
4.1 Spectral clustering procedure   
4.1.1 Renaming

To begin the spectral clustering process, 200 normal images and 200 pneumonia images were randomly selected 
and imported. The images were not named sequentially, so a renaming process was carried out. For instance, the 
original names of the first 3 images were “normal 1,” “normal 10,” and “normal 20.” After renaming, they became 
“NORMAL-1,” “NORMAL-2,” and “NORMAL-3,” respectively. Figure 4 shows the first 20 renamed normal images.
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NORMAL-1 NORMAL-2 NORMAL-3 NORMAL-4 NORMAL-5

NORMAL-6 NORMAL-7 NORMAL-8 NORMAL-9 NORMAL-10

NORMAL-11 NORMAL-12 NORMAL-13 NORMAL-14 NORMAL-15

NORMAL-16 NORMAL-17 NORMAL-18 NORMAL-19 NORMAL-20

Figure 4. Sample of renamed normal images   

4.1.1 Renaming

After renaming, the images were converted to grayscale using the Open Source Computer Vision Library (OpenCV), 
a powerful image processing tool [40]. The cv2.COLOR_BGR2GRAY function from OpenCV was applied to convert 
the images to grayscale. Figure 5 displays the first 20 normal images after grayscale conversion..

                              

NORMAL-1 NORMAL-2 NORMAL-3 NORMAL-4 NORMAL-5

NORMAL-6 NORMAL-7 NORMAL-8 NORMAL-9 NORMAL-10

NORMAL-11 NORMAL-12 NORMAL-13 NORMAL-14 NORMAL-15

NORMAL-16 NORMAL-17 NORMAL-18 NORMAL-19 NORMAL-20

Figure 5. Sample of renamed normal images after grayscale conversion
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4.1.3 Renaming

After grayscale conversion, the images needed to be resized to a smaller size than their original size. This was 
accomplished using the Python Imaging Library (PIL), another powerful tool for image processing [41]. Figure 6 
displays the first 20 resized normal images. The images are presented as large icons in their original renamed, grayscale-
converted, and resized forms. The resized images are significantly smaller in size compared to the remaining images.

                

NORMAL-1 NORMAL-2 NORMAL-3 NORMAL-4 NORMAL-5

NORMAL-6 NORMAL-7 NORMAL-8 NORMAL-9 NORMAL-10

NORMAL-11 NORMAL-12 NORMAL-13 NORMAL-14 NORMAL-15

NORMAL-16 NORMAL-17 NORMAL-18 NORMAL-19 NORMAL-20

Figure 6. Sample of grayscale conversion images after resizing 

4.2 Classification 

The created spectral clustering algorithm was then applied to process the images. First, the images were loaded and 
Principal Component Analysis (PCA) was performed. Next, the distance matrix and Laplacian matrix were computed. 
After getting eigenvectors, a feature vector was created from k first eigenvectors by stacking them as columns, followed 
by applying K-means clustering. Here, k was set to 2. The classified images were saved into two different folders. Figure 
7 shows the classified images by spectral clustering, with one folder containing a sample of one type classified first 30 
images and another folder containing a sample of another type classified first 30 images.
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NORMAL-5 NORMAL-116 PNEUMONIA-1 PNEUMONIA-2 PNEUMONIA-3 PNEUMONIA-4

PNEUMONIA-5 PNEUMONIA-6 PNEUMONIA-7 PNEUMONIA-9 PNEUMONIA-10 PNEUMONIA-11

PNEUMONIA-12 PNEUMONIA-13 PNEUMONIA-14 PNEUMONIA-16 PNEUMONIA-17 PNEUMONIA-18

PNEUMONIA-19 PNEUMONIA-20 PNEUMONIA-21 PNEUMONIA-22 PNEUMONIA-24 PNEUMONIA-27

PNEUMONIA-28 PNEUMONIA-31 PNEUMONIA-32 PNEUMONIA-33 PNEUMONIA-32 PNEUMONIA-35

NORMAL-177 NORMAL-178 NORMAL-179 NORMAL-180 NORMAL-181 NORMAL-182

NORMAL-183 NORMAL-184 NORMAL-185 NORMAL-186 NORMAL-187 NORMAL-188

NORMAL-189 NORMAL-190 NORMAL-191 NORMAL-192 NORMAL-193 NORMAL-194

NORMAL-195 NORMAL-196 NORMAL-197 NORMAL-198 NORMAL-199 NORMAL-200

PNEUMONIA-8 PNEUMONIA-15 PNEUMONIA-23 PNEUMONIA-25 PNEUMONIA-26 PNEUMONIA-29

(a)

(b)

Figure 7. The classified images by spectral clustering for each folder: (a) sample of one type classified first 30 images in one folder and (b) sample of 
another type classified first 30 images in the second folder

Figure 8 and Figure 9 display the results of spectral clustering and “pure” K-means clustering on 400 images, 
with the expectation of 200 normal images and 200 pneumonia images being divided into two separate folders. In 
practice, after applying spectral clustering, 214 images are in one folder and 186 images are in another folder. In the 
214 images folder, there are 198 normal images and 16 pneumonia images. In the 186 images folder, there are 2 normal 
images and 184 pneumonia images. This indicates that the classification was mostly successful. However, the results of 
“pure” K-means clustering are very different. One folder contains 59 images, and another folder contains 341 images, 
indicating a severe imbalance. The folder with 59 images has 22 normal images and 37 pneumonia images while the 
folder with 341 images has 178 normal images and 163 pneumonia images. It is obvious that in each folder, no one 
category dominates, indicating an unsuccessful classification.
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214 images

198 normal images 16 pneumonia images

(a)

186 images

2 normal images 184 pneumonia images

(b)

Figure 8. The details of classified images by spectral clustering

                                                   

59 images

22 normal images 37 pneumonia images

(a)

341 images

178 normal images 163 pneumonia images

(b)

Figure 9. The details of classified images by “pure” K-means clustering     

4.3 Performance

Table 1 shows the performance results of spectral clustering and “pure” K-means clustering. For the silhouette 
coefficient, the spectral clustering is 0.443, which is significantly higher than the “pure” K-means coefficient of 0. A 
silhouette coefficient of 0 indicates overlapping clusters [42]. While 0.443 is not a “perfect” value, it is an improvement 
over the alternative. Spectral clustering also outperformed “pure” K-means in terms of the Davies-Bouldin index, 
achieving a score of 1 compared to the “pure” K-means score of 8. Scores closer to zero indicate better partitioning [43]. 
Additionally, the Calinski-Harabasz index was higher for spectral clustering at 311 compared to the “pure” K-means 
score of 2.8, demonstrating that spectral clustering outperformed “pure” K-means clustering [44].

Table 1. The results of quantified performances made by spectral clustering and “pure” K-means clustering

Spectral clustering “Pure” K-means clustering

Silhouette coefficient 0.443 0.00

Davies-Bouldin index 1.025 8.076

Calinski-Harabasz index 311.582 2.852
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5. Conclusion
Based on the above results and analysis, it can be concluded that: (1) spectral clustering is able to successfully 

classify chest X-ray images based on the presence of disease spots on the lungs and (2) the performance of spectral 
clustering is superior to “pure” K-means clustering as shown by the three unsupervised indexes used in the evaluation.

6. In the Future
Despite achieving satisfactory results, there are still some limitations and areas for improvement in this study. 

Firstly, the computational efficiency of spectral clustering can be optimized, especially for larger datasets. This can be 
achieved by implementing parallel computing techniques or using more efficient algorithms for computing the distance 
and Laplacian matrices.

Secondly, to make the classification more meaningful and realistic, it is necessary to include more types of chest 
diseases in the dataset and to increase the number of clusters accordingly. This will provide a more comprehensive 
analysis of the chest X-ray images and improve the accuracy of the classification results.

Lastly, the “pure” K-means clustering method used for comparison performed poorly in this study, and further 
improvements are needed to make it more effective. This can include using more advanced initialization methods, 
such as K-means++, or applying feature engineering techniques to improve the quality of the input data. Overall, these 
improvements can enhance the performance and applicability of the spectral clustering algorithm in the field of medical 
image analysis.
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