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Abstract: This study presents an improved version of the Driving Training-Based Optimization (DTBO)
algorithm, the Improved Driving Training-Based Optimization (IDTBO). The work addresses fundamental
issues in selecting drivers and learners for the conventional DTBO, which substantially impact the algorithm's
accuracy and convergence speed. Two significant improvements are proposed: including the crowding distance
technique for more diverse driver and learner selection and incorporating the Levy Flight distribution for better
exploration and local optima avoidance. The IDTBO's performance is evaluated using twelve benchmark
functions, including unimodal and high-dimensional multimodal optimization functions. The results indicate
that IDTBO performs exceptionally well, with more extraordinary exploitation ability on unimodal functions
and consistent achievement of the global optima. The proposed IDTBO demonstrated exceptional exploration
capabilities on high-dimensional multimodal functions and performed competitively with other algorithms in the
literature. From six functions, the IDTBO obtained zero optimal values. Again, the rate of convergence analysis
demonstrates that IDTBO finds optimal solutions in fewer iterations, demonstrating its capacity to balance
exploration and exploitation. To assess the strength of the IDTBO in solving real-world problems, the improved
DTBO is further tested on two practical benchmark engineering problems. The IDTBO again produced a
competitive performance against other algorithms in the literature. The study shows that IDTBO is a valuable
metaheuristic algorithm that can tackle various real-world optimization problems.

Keywords: optimization, metaheuristics algorithms, driving training-based optimization, crowding distance, levy
flight

1. Introduction
Metaheuristic algorithms developed from the inspiration of nature and other phenomena, have proven vital

in solving multifaceted engineering optimization problems [1,2]. Their inherent flexibility, coupled with their
wide-ranging search strategies, have established them as the preferred solution tools for many optimization
challenges [3]. At a high level, these algorithms can be categorized into trajectory-based and population-based
techniques. The trajectory-based techniques, encompassing algorithms such as simulated annealing (SA) deals
with refining a single solution through the algorithms search space for the entire period of solving the problem
[4]. In contrast, population-based techniques such as genetic algorithms (GA) and particle swarm optimization
(PSO), begin with the search process with several potential solutions, refining them iteratively until an optimal
or near-optimal solution emerges [5,6]. In addition, population-based algorithms are further classified into
swarm intelligence-based algorithm (SI) and evolutionary algorithm (EA) [2,7]. Evolutionary algorithms are
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designed based on the concept of species evolving over time to change their characteristics to improve their
adaptability to their niche. Swarm intelligence algorithms mimic the stochastic behaviour of animals that live in
groups such as birds, fish, etc. to solve optimization problems [2,4,7]. The SIs are also known for their ability to
search wider space within the problem boundary to produce quality solution compared to other types of
algorithms [8]. Teaching–Learning-Based Optimization (TLBO) draws inspiration from classroom dynamics,
emphasizing interactions between students and the teacher. TLBO operates by updating population members
through a process akin to teacher training and information exchange among peers [9]. Grey Wolf Optimization
(GWO) is influenced by the social behaviour and hierarchical structure observed in grey wolf packs during
hunting. GWO employs four types of wolves—alpha, beta, delta, and omega to replicate the leadership
hierarchy, with population members updated according to simulations of the hunt's stages: prey search,
encircling, and attack [10]. The Whale Optimization Algorithm (WOA) mimics humpback whales' social
behaviour and hunting strategy, precisely their bubble-net hunting technique. WOA updates population
members through three phases inspired by the whales' hunting behaviour: prey search, encirclement, and
bubble-net foraging [11]. The Tunicate Swarm Algorithm (TSA) is developed by simulating tunicates' jet
propulsion and swarm behaviour during navigation and foraging. TSA updates its population through four
phases: conflict avoidance, neighbour attraction, convergence toward the best agent, and collective swarm
behaviour [12]. On the other hand, EA algorithms begin with a set of solutions and continuously evolve them
through generations to achieve a solution for a problem being solved.

Driving training-based optimization (DTBO) is a new optimizer recently introduced by [13]. The DTBO’s
metaheuristic processes are based on the simulation of human leaning activities during driving training. The
DTBO has been assessed on benchmark optimization functions and real-world optimization problems and has
been found to be effective when compared to some popular algorithms [13]. The DTBO has been applied to
solve pressure vessel design problem to minimize the cost of design. Again, it has been used to optimize the
design of the welded beam problem to minimize cost of fabrication. Again, the DTBO method has been applied
to solve the partial shading (PS) problem quickly and reliably in maximum power point (MPP) detection for PV
systems [14]. The DTBO improved the tracking speed and reduced fluctuations in the power output during the
tracking period. In these applications, the DTBO algorithm produced the most effective solution compared to
popular algorithms in the literature. Although the DTBO, has proven to provide acceptable results for solving
many optimization and engineering problems, it has some limitations which require attention and further
research to improve its performance. Also, based on the theory of no free lunch, the classical DTBO cannot be
assumed to be the best optimizer hence there is room for further improvement in its performance.

This paper proposes an enhanced version of DTBO utilizing Levy Flight and Crowding Distance theory to
improve convergence speed and solution quality, addressing its existing limitations. The proposed variant of the
DTBO provides researchers with more accurate solutions for various applications. This work, therefore,
contributes to the evolution of metaheuristic optimization techniques in the computer science field.

This paper is organized as follows: The original DTBO is described in Section 2, Section 3 presents the
proposed improved driving training optimization (IDTBO). Testing of the IDTBO on benchmark functions and
the test parameters used for testing the algorithms are presented in Section 4. Results are presented and analysed
in Section 5, Section 6 concludes the paper and Section 7 sets the future direction for the research done.

2. Driving Training-Based Optimization
The driving training-based optimization (DTBO) algorithm was designed and implemented using the

teaching methodology in which a student learns how to drive under the guidance of a driving instructor [13].
The DTBO algorithm, which is modelled after driving instructors who instruct their pupils in driving skills
investigates and utilizes the solution space to identify the best solution to the optimization problems.

2.1 Inspiration and Main Idea
The learner-teacher relationship found in driving schools serves as the basis for DTBO. In the DTBO,

learners select from a variety of instructors to learn driving skills. The DTBO algorithm uses this technique to
improve the way it explores the solution space, which lays the foundation for the design of the algorithm.
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2.2 Mathematical Model
In the algorithm, drivers and learners are represented as candidate solutions for the problem being solved.

Based on learners acquiring skills from various instructors, candidate solutions iteratively improve their search
efficacy, thereby reaching convergence faster to obtain optimal solution. The initial positions of the solution
space are initialized using (1).

 ; 1,2,... , 1,2,...ij j j jX lb r ub lb i N j m      (1)

where X is the population of DTBO, Xi is the ith candidate solution, Xij is the value of the jth variable determined
by the ith candidate solution, N is the size of the population of DTBO, m is the number of problem variables, r is
a random number from the interval [0, 1], and are the lower and upper bounds of the jth problem variable,
respectively.

The main goal of metaheuristic algorithm is to update existing solutions to better optimize a given
objective function, The DTBO algorithm advances its candidate solutions through three strategic phases
outlined below.

2.3 Exploration
The exploration stage of the DTBO involves the algorithm systematically searching through the solution

space to identify potential solutions. The aim is to navigate beyond local optima, which are suboptimal points,
and explore different regions of the solution space. This process aids the algorithms to uncover a diverse set of
candidate solutions, improving the chances of finding the global optimum. The exploration processes of the
DTBO are outlined below.

2.3.1 Training by the Driving Instructor

In this initial phase, learner drivers select their driving instructors based on sets of criteria. This selection is
pivotal as it steers the population members i.e., candidate solutions towards diverse regions in the search space,
enhancing global search and aiding in the discovery of the optimal solution. The mathematical model for this
phase of the DTBO is given in (2). The new position for each member is calculated using (2). The current
position Xij is updated if the fitness value of the new position 1

,
P
i jX improves the value of the objective function

according to (3).

 
 

, , ,1
,

, , ,

, ;

,

i j ki j i j DIkiP
i j

i j i j ki j

X r DI I X F
X

X r X DI otherwise

     
  

(2)

1 1, ;
,

P P
i i i

i
i

X F F
X

X otherwise
  


(3)

where 1P
iX is the new calculated status for the ith candidate solution based on the first phase of the DTBO, 1

,
P
i jX

is its jth dimension, 1P
iF is its objective function value, I is a number randomly selected from the set {1, 2}, r is

a random number in the interval [0, 1], where ki is randomly selected from the set of driving instructors,
represents a randomly selected driving instructor to train the ith member, ,ki jDI is its jth dimension, and DIkiF is

its objective function value.

2.3.2 Patterning of the Instructor's Skills by the Learner Driver

Subsequently, candidate solutions are updated according to (4) by integrating the driving skills and
strategies learned from the instructors. The current position Xij is updated if the fitness value of the new position

1
,
P
i jX improves the value of the objective function according to (5). This mimicry step propels DTBO members

to new positions within the search space, further bolstering the exploration capabilities of the algorithm.
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where 2P
iX is the new calculated status for the ith candidate solution based on the second phase of DTBO, 2

,
P
i jX

is its jth dimension, 2P
iF is its objective function value, and P is the patterning index given by (6).

0.01 0.9 1 tP
T

    
 

(6)

where t and T are the iteration count and total number of iterations, respectively.

2.4 Exploitation
The exploitation phase of the DTBO uses information identified during the exploration phase to enhance

the algorithm's search efficiency and converge towards optimal solutions. By using information from the
exploration phase, the DTBO can iteratively refine and improve candidate solutions, contributing to the overall
effectiveness of the algorithm in solving complex optimization problems.

2.4.1 Personal Practice by the Learner Driver

The final phase allows the learner drivers to practice their newly acquired skills, honing them to better
adapt to optimal driving conditions. This stage determines the DTBO's ability of utilizing the local search space
by allowing each participant to have an improved position through a localized search. In this phase, each
member of the population is first assigned a random position using (7). If the fitness value of the new location

1
,
P
i jX is better than the previous position’s fitness values Xij the position is updated according to (8).
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In the DTBO algorithm, the objective function value is used to determine the suitability of each potential
solution in the search space. The objective value of candidate solution is compared at the end of each iteration,
and the solution with the best objective function value—referred to as X(best)—is chosen as the best member of
the population. The top-performing member of the population is carried over to the next iteration together with
other members that produce values that improve the optimization of the objective function of the problem being
solved. The best candidate is found by repeating this selection procedure through each iteration.

3. Proposed Improved Driving Training-Based Optimization (IDTBO)
The choice of learners and drivers in the DTBO metaheuristic process can significantly impact the

algorithm's accuracy. In the DTBO algorithm, drivers are the members used to produce new solutions in each
iteration. The new solutions that are produced are known as learners. If the drivers are poorly chosen, the DTBO
algorithm's chances of finding optimal solutions are minimal. This is because drivers are accustomed to coming
up with fresh ideas, and if the drivers lack quality, the new ideas will also be subpar. Furthermore, if the learners
are well chosen, there is a higher chance that the DTBO algorithm will converge to a reasonable solution within
the search space. This is because the learners update the population of solutions, and if the learners are subpar,
there is less chance that the population of solutions will get better. To deal with these issues, the algorithm's
metaheuristic process should include operators such as diversity, learner novelty, and the selection of high-fit
solutions to guarantee the efficient selection of drivers and learners. Including diversity will guarantee that the
DTBO algorithm searches the solution space well to find the optimal solution with the quickest rate of
convergence. The selection of drivers (NDI) in the original DTBO algorithm is based on (9), where N, t, and T are
the population size, iteration count, and total number of iterations.

0.1 1DI
tN N
T

     
 

(9)

In (9), the number of drivers selected is always equal to or less than 10 percent of the total population. This
presents a challenge to the algorithm in achieving quality solutions and getting stuck in local optima since only
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few fit members of the solution are selected as drivers and many candidate members are left as learners. To deal
with this fundamental weakness in the DTBO, a crowding distance technique for selecting drivers and learners
is introduced. Crowding distance is a measure of how similar a solution is to its neighbours [15,16]. In crowding
distance selection, the drivers and learners are selected such that the average crowding distance of the selected
solutions is maximized. The technique helps to ensure that the drivers and learners are diverse. It also helps to
prevent the DTBO algorithm from getting stuck in a local optimum. The theory of crowing distance is applied to
the DTBO in the three steps below.

Step 1: For each objective being solved, sort all members of the population from the best to worst solution.
Select the objective value of the best and worst solution; fmax and fmin respectively as boundaries.

Step 2: Calculate the crowding distance of each member i within the boundaries according to (10).

1 1i i
i

max min

f f
d

f f
 




(10)

In (10), fi+1 and fi-1 are the objective values of the immediate neighbours of the individual i in the
sorted list for the objective function.

Step 3: Select the top half members of the population with the highest crowding distance as drivers and
other half as learners in the next iteration of the DTBO. The value of k should be set depending on
the problem being solved and the desired degree of diversity. A higher value of k will result in a
more diverse population, while a lower value of k will result in a less diverse population.

Furthermore, by initializing the algorithm solution using the Levy Flight distribution, the DTBO's
performance is further improved. In the classical DTBO, random distributions as defined by (1) are commonly
used to initialize the population. This restricts the scope of the search space and could produce less-than-ideal
results. However, the algorithm can search outside the immediate search space of initial solutions and
potentially find better solutions by using Levy flight to initialize the solution, which generates huge leaps in the
search space [17,18,19]. Furthermore, Levy Flight keeps the algorithm from prematurely converging to poor
solutions by avoiding local optima. In the modification, (11) is used to generate an initial random solution. Next,
using (12), the levy flight is used to scale down the solution.

   ,ij j j jx lb ub lb rand A D    (11)

   ,ij ijX x rand A D levy A   (12)

In (11) and (12), A and D are the number of search agents and the dimension of the problem being solved
respectively. The steps involved in applying the Levy Flight distribution are outlined below.

Step 1: Calculate the step size for the levy distribution using (13). This is to ensure that the step size is
appropriate for the dimensionality of the problem.

1step size
D

 (13)

Step 2: Generate a random number from Cauchy distribution as Cauchy number. In this work, the
standard probability distribution function (PDF) with location parameter 0 and scale parameter 1
defined according to (14) is used.

   2
1

1
f x

n x



(14)

Step 3: Calculate the levy number using (15).
levy number step size Cauchy number  (15)

The pseudocode for implementing the proposed improved driving training-based optimization algorithm
(IDTBO) is shown in Algorithm 1.

https://orcid.org/0000-0002-2011-7965
https://orcid.org/0000-0003-3168-5420
https://orcid.org/0009-0002-2778-598X


Volume 3 Issue 1|2024| 17 Research Reports on Computer Science

Algorithm 1. Implementation of IDTBO

Start DTBO

1. Input: The optimization problem information.
2. Adjust N and T.
3. Initialize a random solution of the DTBO using (11).
4. Calculate the step size of the levy distribution using (13)
5. Generate random number from Cauchy distribution as Cauchy number using (14)
6. Calculate the Levy number using (15) and use it to scale down the random solution generated using (12)
7. Evaluate the objective function using the new scaled random solution.
8. For t = 1 to T
9. For i = 1 to N
10. Phase 1: Training by the driving instructor (exploration).
11. Determine the driving instructor matrix based on the crowding distance method.
12. Select a driving instructor at random from the matrix DI.
13. Calculate the new position for the ithDTBO member using (2).
14. Update the position of the ith DTBO member using (3).
15. Phase 2: Learner driver patterning from instructor skills (exploration).
16. Calculate the patterning index P using (6).
17. Calculate a new position of the ithDTBO member using (4).
18. Update the position of the ithDTBO member using (3).
19. Phase 3: Personal practice (exploitation)
20. Calculate the new position for the ithDTBO member using (7).
21. Update the position of the ith DTBO member using (8).
22. End.
23. Update the best-found candidate solution.
24. End.
25. Output: The best candidate solution obtained by DTBO.

End DTBO

4. Testing of Proposed Improved Driving Training-Based Optimization
The proposed improved driving training-based optimization algorithm with Levy Flight and crowding

distance (IDTBO) is tested on twelve benchmark functions selected from IEEE CEC2017 benchmark functions.
The details of the functions are given in Table 1 [20]. Functions 1–6 are unimodal functions and functions F8–

F12 are high dimensional (HD) multimodal functions. The IDTBO is compared against the original DTBO and
six (6) popular algorithms in the literature such as Genetic Algorithm (GA), Grey Wolf Optimizer (GWO),
Particle Swarm Optimization (PSO), Teaching-Learning Based Optimization (TLBO), Tunicate Swarm
Algorithm (TSA) and Wale Optimization Algorithm (WOA). The parameters of these algorithms are shown in
Table 2.

Table 1. Benchmark Functions

Function Search Range Optimal Value Dimensions

F1 [-100, 100] 0 30
F2 [-10, 10] 0 30
F3 [-100, 100] 0 30
F4 [-100, 100] 0 30
F5 [-100, 100] 0 30
F6 [-1.28, 1.28] 0 30
F7 [-500, 500] -419.9829 × Dim 30
F8 [-5.12, 5.12] 0 30
F9 [-32, 32] 0 30
F10 [-600, 600] 0 30
F11 [-50, 50] 0 30
F12 [-50, 50] 0 30
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Table 2. Values to Control Parameters of Competitor Algorithms [21]

Algorithm Parameter Value
GA Type

Mutation
Crossover
Selection

Real coded
Gaussian (Probability = 0.05)
Whole arithmetic (Probability = 0.8)
Roulette wheel (Proportionate)

GTO A
H

0.4
0.2

GWO Convergence parameter (a) a: Linear reduction from 2 to 0.
PSO Velocity limit

Topology
Inertia weight
Cognitive and social constant

10% of dimension range
Fully connected
Linear reduction from 0.9 to 0.1.
(C1, C2) = (2, 2)

TLBO random number
TF: teaching factor

rand is a random number from interval [0, 1].
TF = round [(1 + rand)]

TSA c1, c2, c3
Pmin
Pmax

random numbers lie in the interval [0, 1].
1
4

WOA l is a random number in [−1, 1]
r is a random vector in [0, 1]
Convergence parameter (a) a: Linear reduction from 2 to 0.

The comparison is done based on the optimum value, mean absolute error (MAE) denoted by (16) [22,23]
and convergence speed denoted by the number of iterations to obtain convergence and rank.

1

1MAE S
oi ii

X X
S 

  (16)

In (16), S is the number of cost samples, Xoi is the benchmark value of the test function and Xi is the
computed optimum value.

To evaluate the performance of the optimization algorithms, each of the competing algorithms, as well as
the proposed IDTBO is run for 1000 iterations in 20 independent runs on the objective functions. All algorithms
were run on the same computer, an Intel ® Core™ i7-7500U with CPU @ 2.70 GHz 2.90GHz and 12GB RAM
using MATLAB simulation software. The mean values are calculated based on (16).

5. Results and Analysis
This study comprehensively evaluates the performance of the proposed Improved Driving Training

Optimization Algorithm (IDTBO) against the original DTBO and six established algorithms from the literature:
Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), Teaching-
Learning-Based Optimization (TLBO), Tunicate Swarm Algorithm (TSA), and Whale Optimization Algorithm
(WOA). The algorithms are compared based on their ability to find optimal solutions and achieve convergence
across twelve diverse test functions categorized into unimodal and high-dimensional multimodal landscapes.

Two key metrics are used for comparison:
 Optimum values: The best solution achieved by each algorithm on each function, indicating its ability to

locate the global optimum.
 Mean convergence values: The average value across multiple runs where the algorithm reaches its

stopping criterion, showcasing its convergence speed and stability.

5.1 Evaluation of Exploitation Ability on Unimodal Functions
Six unimodal benchmark functions (F1–F6) were used to assess the algorithms' performance in terms of

their exploitation potential. These functions are intended to evaluate how well the algorithm finds the global
optimal value of zero. The optimum values and mean absolute errors are shown in Table 3 and Table 4
respectively.
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Table 3. Optimum Values

Function GA GWO PSO TLBO TSA WOA IDTBO DTBO
F1 3.71E+02 3.53E-60 1.18E-79 5.32E-179 2.39E-49 2.97E-175 0.00E+00 0.00E+00
F2 1.50E-02 1.01E-34 1.61E-09 2.99E-89 2.38E-28 4.96E-106 0.00E+00 0.00E+00
F3 3.18E+03 1.16E-17 1.06E-03 2.28E-38 9.93E-17 2.33E+04 8.34E-206 6.65E-112
F4 2.83E+01 1.11E-14 7.06E-03 1.45E-71 6.46E-03 9.13E+01 0.00E+00 0.00E+00
F5 2.16E+03 7.55E-01 0.00E+00 0.00E+00 4.06E+00 5.62E-02 0.00E+00 0.00E+00
F6 4.04E-02 1.25E-03 5.56E-03 5.32E-04 6.86E-03 9.09E-04 3.29E-06 3.14E-05

Table 4.Mean of Convergence Values

Function GA GWO PSO TLBO TSA WOA IDTBO DTBO
F1 9.09E+02 3.14E+02 1.42E+02 1.17E+02 6.78E+02 4.30E+02 7.46E-05 7.38E+01
F2 6.95E+05 5.78E+09 9.88E+02 1.24E+04 1.50E+08 8.61E+08 1.60E-04 1.58E+09
F3 4.54E+03 1.85E+03 4.97E+02 5.09E+02 1.65E+03 6.46E+04 8.90E+01 2.34E+02
F4 3.01E+01 1.54E+00 2.13E+00 4.59E-01 4.01E+00 9.13E+01 1.10E-01 1.26E-01
F5 2.34E+03 2.97E+02 1.40E+02 8.89E+01 3.90E+02 3.43E+02 7.11E+01 7.31E+01
F6 2.87E-01 5.30E-01 8.43E-02 5.12E-02 7.18E-01 6.05E-01 9.34E-02 8.95E-02

From table 3, for functions F1, F2, F4, and F5, IDTBO achieved four zero optimal values, demonstrating
remarkable performance. Even though IDTBO was unable to achieve the optimal value of zero for functions F3
and F6, it was still able to get the lowest values when compared to other algorithms, demonstrating its superior
exploitation capacity.

Table 4 further supports this, showing that IDTBO obtained the lowest mean values for functions (F1–F5).
Table 5 shows the ranking of algorithms according to the mean absolute error (MAE) of their optimum

values in Table 3 to measure the accuracy of exploitation. IDTBO and DTBO ranked first demonstrating their
accuracy in finding the optimum values. These findings support the competitiveness of IDTBO in solving the
benchmark functions by highlighting its advantage over the other metaheuristic algorithms in exploitation
accuracy.

Table 5. Ranking of Algorithms based on MAE for Unimodal Functions

Algorithm MAE Rank
GA 820.6421 7
GWO 0.1081 5
PSO 0.0020 4
TLBO 0.0001 3
TSA 0.5821 6
WOA 3336.6086 8
IDTBO 0.0000 1
DTBO 0.0000 1

5.2 Evaluation of Exploration Ability on High-Dimensional Multimodal Functions
Six high-dimensional multimodal functions (F7–F12) were used to evaluate the algorithms' ability to solve

complex benchmark functions with several local optima. These functions present an exploration issue, requiring
algorithms to properly strike a balance between exploitation and exploration to prevent premature convergence.
The best values that each algorithm was able to achieve on these functions are listed in Table 6.

Table 6. Optimum Values

Function GA GWO PSO TLBO TSA WOA IDTBO DTBO
F7 -4.82E+03 -6.59E+03 -4.71E+03 -7.73E+03 -5.30E+03 -1.26E+04 -1.26E+04 -1.26E+04
F8 2.99E+01 7.88E+00 2.59E+01 5.60E-04 1.45E+02 0.00E+00 0.00E+00 0.00E+00
F9 1.18E+01 1.51E-14 9.31E-01 7.99E-15 1.51E-14 4.44E-15 4.44E-16 4.44E-16
F10 1.69E+01 0.00E+00 0.00E+00 0.00E+00 1.53E-02 0.00E+00 0.00E+00 0.00E+00
F11 1.71E+01 4.79E-02 1.71E-32 2.78E-19 1.38E+00 4.40E-03 1.57E-32 1.57E-32
F12 1.76E+04 6.98E-01 1.20E-31 1.10E-21 2.22E+00 5.01E-01 1.35E-32 1.35E-32

From table 6, the IDTBO and DTBO together achieved zero optimal values in two functions (F8 and F10).
Notably, when compared to other algorithms in the literature, IDTBO and DTBO achieved the best values for all
functions. This cumulative result showcases the exceptional exploration capabilities of IDTBO and DTBO.
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Table 7 gives the mean value of the thousand optimum values produced for 1000 iterations. Again, the
IDTBO produced minimum errors in two functions: F7 and F10.

Table 7.Mean of Convergence Values

Function GA GWO PSO TLBO TSA WOA IDTBO DTBO
F7 -4.60E+03 -4.44E+03 -4.62E+03 -6.59E+03 -5.16E+03 -1.25E+04 -1.25E+04 -1.25E+04
F8 3.84E+01 3.07E+01 3.62E+01 2.33E+01 1.87E+02 1.08E+01 8.40E-01 7.77E-01
F9 1.20E+01 3.81E-01 1.47E+00 1.89E-01 1.64E+00 3.54E-01 5.05E-02 4.51E-02
F10 1.91E+01 2.84E+00 1.53E+00 1.10E+00 3.69E+00 3.00E+00 6.25E-01 6.62E-01
F11 3.65E+05 2.46E+06 1.63E+05 1.44E+05 2.81E+06 1.48E+06 6.13E+05 5.77E+05
F12 1.95E+06 3.14E+06 2.76E+05 5.76E+05 3.60E+06 4.11E+06 8.59E+05 1.10E+06

Table 8 presents the rankings of the algorithms based on the MAE of the optimum values in Table 6. The
proposed IDTBO ranked first, with DTBO showing its superior ability in solving high-dimensional problems.

Table 8. Ranking of Algorithms based on MAE for High Dimensional Multimodal Functions

Algorithm MAE Rank
GA 3630.5068 8
GWO 859.8482 6
PSO 1130.5423 7
TLBO 695.8865 4
TSA 1063.8890 5
WOA 4.4039 3
IDTBO 4.2858 1
DTBO 4.2858 1

5.3 Convergence Curves
The convergence curves visually represent how a metaheuristic algorithm progresses towards optimal

solutions over time. Analyzing these curves provides valuable information about the algorithm’s effectiveness
and efficiency. The figures 1–12 show the convergence curves of all the algorithms employed on the 12
benchmark functions. The algorithm with the best convergence is expected to reach the optimum value with
minimum number of iterations. The IDTBO produced the best convergence curves in five functions: F3, F6, F7,
F8, and F9. In the other functions, it performed competitively with the DTBO as well. This demonstrates how
well IDTBO balances exploration and exploitation in comparison to other algorithms, highlighting the
algorithm's potency and efficiency in both searching and exploiting the search space.

Figure 1. Convergence curve for F1
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Figure 2. Convergence curve for F2

Figure 3. Convergence curve for F3

Figure 4. Convergence curve for F4
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Figure 5. Convergence curve for F5

Figure 6. Convergence curve for F6

Figure 7. Convergence curve for F7
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Figure 8. Convergence curve for F8

Figure 9. Convergence curve for F9

Figure 10. Convergence curve for F10
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Figure 11. Convergence curve for F11

Figure 12. Convergence curve for F12

5.4 Testing on Real World Engineering Problems
The IDTBO is further tested on real-world engineering problems to access its effectiveness in solving

practical problems. The pressure vessel, cantilever beam and string design problems are used for the testing.

5.4.1 Pressure Vessel Design Problem

The pressure vessel is a continuous optimization problem with the objective to find the most optimal
combination of parameters of shell (Ts) and head thickness (Th), inner radius (R) and length of cylindrical
section (L) that ensures the vessel's structural integrity, safety, and functionality can meet stress and material
strength constraints, while also minimizing material usage and associated manufacturing costs. The
representation of the pressure design problem is shown in figure 13. The description of the optimization problem
is given below.
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Figure 13. Representation of pressure vessel design
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From table 9, the best solution found the improved driving training-based optimization (IDTBO) is better
than the DTBO and four other algorithms: WOA, TSA, GWO and GTO. White shark optimization (WOA) and
POA produced the best optimum value. Again, the average value obtained by the IDTBO is better than three
algorithms: WOA, GTO and DTBO.

Table 9. Results for pressure vessel design

Algorithms Parameters
Optimum Value Mean ValueA B C D

WSO 0.778169 0.383036 40.319619 200.00 5880.671 6322.652

WOA 0.852402 0.444594 41.942057 178.58 6379.904 7203.060

TSA 0.838759 0.418964 43.414757 162.19 6047.267 6251.416

TLBO 0.778175 0.383041 40.319970 200.00 5880.685 5957.752

POA 0.778169 0.383036 40.319619 200.00 5880.671 6060.958

GWO 0.779065 0.383947 40.359008 199.51 5885.841 6269.511

GTO 0.894653 0.451509 46.295637 131.67 6183.904 8856.756

DTBO 0.996357 0.490441 51.624195 85.96 6362.939 6648.102

IDTBO 0.778847 0.383455 40.354705 199.51 5882.090 6603.937

5.4.2 String Design Problem

The objective function of this problem is to minimize the weight of a tension/compression spring subject to
constraints on shear stress, surge frequency and minimum deflection. The representation of the string design
problem is shown in figure 14. The design variables are the mean coil diameter D = x1 the wire diameter d = x2
and the number of active coils N = x3.
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Figure 14. Representation of string design
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From table 10, the IDTBO exhibited a competitive performance compared to the other algorithms. All
algorithms obtained an optimum value of 0.013, however IDTBO, GTO, TSA and WOA produced the second-
best average value of 97040.67. This shows the competitive nature of the proposed improved driving training-
based optimization.

Table 10. Results for string design problem

Algorithms Parameters Optimum Value Mean Value

a b c

WSO 0.051711 0.357253 11.257640 0.013 291121.97

WOA 0.055356 0.451513 7.322753 0.013 97040.67

TSA 0.053098 0.391397 9.547392 0.013 97040.67

TLBO 0.052196 0.369025 10.602337 0.013 68324.05

POA 0.051689 0.356727 11.288403 0.013 169116.24

GWO 0.050207 0.322065 13.657523 0.013 194081.32

GTO 0.056545 0.483588 6.507328 0.013 97040.67

DTBO 0.056860 0.494339 6.211652 0.013 194081.32

IDTBO 0.057434 0.511338 5.842718 0.013 97040.67

6. Conclusion
An enhanced version of the driving training-based optimization (DTBO) algorithm has been proposed. The

study addresses the problem of the algorithm getting stacked in local optima due to the selection of leaners and
drivers in the metaheuristic processes. Two critical enhancing operators were introduced in the classical DTBO.
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First, drivers and learners are chosen using the crowding distance technique to enhance the algorithm's diversity.
Again, to enhance exploration and aid the DTBO in escaping local optima entrapment, the proposed IDTBO's
initialization phase incorporates the Levy Flight distribution. These were introduced to improve the algorithm's
convergence speed, diversity, and accuracy. To assess the effectiveness of the proposed IDTBO, it is tested on
twelve benchmark functions, including high-dimensional multimodal and unimodal functions from the literature.
Again, the effectiveness of the IDTBO in solving real-world problems is assessed with pressure vessel and
string design benchmark engineering problems. The evaluation encompasses exploitation and exploration
capabilities, which are crucial for metaheuristic algorithms.

In terms of exploitation ability on unimodal functions, IDTBO demonstrates remarkable performance by
achieving optimal values, particularly zero optimal values for several functions. Even when not achieving
absolute optimality, IDTBO consistently outperforms other algorithms, showcasing its superior exploitation
capacity. Additionally, IDTBO ranks first in accuracy, as reflected in the mean absolute error (MAE) analysis.

Furthermore, in evaluating exploration ability on high-dimensional multimodal functions, IDTBO excels
by achieving zero optimal values in multiple functions, showcasing its exceptional exploration capabilities.
Again, IDTBO ranks first in accuracy, underscoring its efficacy in solving high-dimensional problems.

The convergence curves further illustrate IDTBO's effectiveness and efficiency, demonstrating its ability to
balance exploration and exploitation across various benchmark functions. IDTBO produces superior
convergence curves in several functions, highlighting its potency and efficiency in searching and exploiting the
search space.

Finally, real-world applications validate IDTBO's competitiveness, as demonstrated in the pressure vessel
and string design problems. IDTBO consistently outperforms other algorithms in these scenarios, further
reinforcing its potential in practical optimization tasks.

The findings underscore IDTBO's competitiveness and effectiveness across diverse optimization challenges,
positioning it as a promising algorithm for real-world applications in various domains.

7. Recommendation
This research opens opportunities for further developments and applications of IDTBO in solving complex

and diverse optimization tasks. Applying the algorithm to real-world optimization problems across various
domains is recommended to assess the practicality, robustness, and effectiveness of IDTBO in solving real
world problems, as well as complex and practical optimization challenges.

Conflict of Interest
The authors declare no potential conflict of interest regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent, misconduct, data fabrication and, or falsification, double
publication and, or submission, and redundancy have been completely witnessed by the authors.

References
[1] Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization

Algorithms for Power Systems Problems. Sustainability 2023, 15, 9434, https://doi.org/10.3390/su151294
34.

[2] Blum, C.; Chiong, R.; Clerc, M.; Dejong, K.; Michalewicz, Z.; Neri, F. Evolutionary Optimization. In
Variants of Evolutionary Algorithms for Real-World Applications, 1st ed.; Springer Berlin: Heidelberg,
Germany, 2014; pp.1–29. https://doi.org/10.1007/978-3-642-23424-8.

[3] Kwegyir, D.; Frimpong, E. A.; Opoku D. Modified Local Leader Phase Spider Monkey Optimization
Algorithm. ADRRI J. Eng. Technol. 2021, 5, 1–18.

[4] Kar, A.K. Bio inspired computing – A review of algorithms and scope of applications. Expert Syst. Appl.
2016, 59, 20–32, https://doi.org/10.1016/j.eswa.2016.04.018.

[5] Sangaiah, A.K.; Sheng, M.; Zhang, Z. Computational Intelligence for Multimedia Big Data on the Cloud
with Engineering Applications; Elsevier: Amsterdam, Netherlands, 2018.

https://orcid.org/0000-0002-2011-7965
https://orcid.org/0000-0003-3168-5420
https://orcid.org/0009-0002-2778-598X


Research Reports on Computer Science 28 | Daniel Kwegyir, et al.

[6] Beheshti, Z.; Mariyam, S.S. A Review of Population-based Meta-Heuristic Algorithm. Int. J. Adv. Soft
Comput. Appl. 2013, 5, 1–35.

[7] Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence. Morgan Kaufmann Publishers: Cambridge, MA,
USA, 2001; pp. 512.

[8] Adetunji, K.E.; Hofsajer, I.W.; Abu-Mahfouz, A.M.; Cheng, L. A Review of Metaheuristic Techniques for
Optimal Integration of Electrical Units in Distribution Networks. IEEE Access 2020, 9, 5046–5068,
https://doi.org/10.1109/access.2020.3048438.

[9] Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for const
rained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315, https://doi.org/1
0.1016/j.cad.2010.12.015.

[10] Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61, https://doi.
org/10.1016/j.advengsoft.2013.12.007.

[11] Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. https://doi.o
rg /10.1016/j.advengsoft.2016.01.008.

[12] Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based m
etaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541, https://doi.org/10.
1016/j.engappai.2020.103541.

[13] Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving
optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 1–21,
https://doi.org/10.1038/s41598-022-14225-7.

[14] Rehman, H.; Sajid, I.; Sarwar, A.; Tariq, M.; Bakhsh, F.I.; Ahmad, S.; Mahmoud, H.A.; Aziz, A. Driving t
raining‐based optimization (DTBO) for global maximum power point tracking for a photovoltaic system u
nder partial shading condition. IET Renew. Power Gener. 2023, 17, 2542–2562, https://doi.org/10.1049/rp
g2.12768.

[15] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans. Evol. Comput. 2002, 6, 182–197, https://doi.org/10.1109/4235.996017.

[16] Bechikh, S.; Kessentini, M.; Said, L.B.; Ghédira, K. Preference incorporation in evolutionary multiobjectiv
e optimization: A survey of the state-of-the-art. Adv. Comput. 2015, 98, 141–207, https://doi.org/10.1016/b
s.adcom.2015.03.001.

[17] Gao, Y.; Zhang, H.; Duan, Y.; Zhang, H. A novel hybrid PSO based on levy flight and wavelet mutation
for global optimization. PLOS ONE 2023, 18, e0279572, https://doi.org/10.1371/journal.pone.0279572.

[18] Kamaruzaman, A.F.; Zain, A.M.; Yusuf, S.M.; Udin, A. Levy Flight Algorithm for Optimization Problems
- A Literature Review. Appl. Mech. Mater. 2013, 421, 496–501, https://doi.org/10.4028/www.scientific.ne
t/amm.421.496.

[19] Chawla, M.; Duhan, M. Levy Flights in Metaheuristics Optimization Algorithms – A Review. Appl. Artif.
Intell. 2018, 32, 802–821, https://doi.org/10.1080/08839514.2018.1508807.

[20] Optimization Test Functions and Datasets. Available online: https://www.sfu.ca/~ssurjano/optimization.ht
ml (accessed on 24 April 2024).

[21] Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for
Engineering Applications. Sensors 2022, 22, 855, https://doi.org/10.3390/s22030855.

[22] Swami, V.; Kumar, S.; Jain, S. An Improved Spider Monkey Optimization Algorithm. In Soft Computing:
Theories and Applications. Advances in Intelligent Systems and Computing, Springer: Singapore, 2018,
https://doi.org/10.1007/978-981-10-5687-1_7.

[23] Singh, P.R.; Moussa, D.; Shengwu, X.; Singh, B.P. Improved Spider Monkey Optimization Algorithm to
train MLP for data classification. 3c Tecnología: glosas de innovación aplicadas a la pyme 2019, 8, 142–
165, https://doi.org/10.17993/3ctecno.2019.specialissue2.142-165.

https://orcid.org/0000-0002-2011-7965
https://orcid.org/0000-0003-3168-5420
https://orcid.org/0009-0002-2778-598X

	1.Introduction
	2.Driving Training-Based Optimization
	3.Proposed Improved Driving Training-Based Optimizat
	4.Testing of Proposed Improved Driving Training-Base
	5.Results and Analysis 
	6.Conclusion 
	7.Recommendation
	Conflict of Interest

