
Research Reports on Computer Science

https://ojs.wiserpub.com/index.php/RRCS

Article

AComparative Analysis of Model Agnostic Techniques for Explainable

Artificial Intelligence

Yifei Wang

School of Information, University of California, Berkeley, Berkeley, CA, USA
E-mail: sarahwang688@berkeley.edu

Received: 13 April 2024; Revised: 1 July 2024; Accepted: 22 July 2024

Abstract: Explainable Artificial Intelligence (XAI) has become essential as AI systems increasingly influence critical

domains, demanding transparency for trust and validation. This paper presents a comparative analysis of prominent model

agnostic techniques designed to provide interpretability irrespective of the underlying model architecture. We explore Local

Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plots

(PDP), Individual Conditional Expectation (ICE) plots, and Anchors. Our analysis focuses on several criteria including

interpretative clarity, computational efficiency, scalability, and user-friendliness. Results indicate significant differences in

the applicability of each technique depending on the complexity and type of data, highlighting SHAP and LIME for their

robustness and detailed output, whereas PDP and ICE are noted for their simplicity in usage and interpretation. The study

emphasizes the importance of context in choosing appropriate XAI techniques and suggests directions for future research

to enhance the efficacy of model agnostic approaches in explainability. This work contributes to a deeper understanding

of how different XAI techniques can be effectively deployed in practice, guiding developers and researchers in making

informed decisions about implementing AI transparency.
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1. Introduction

The increasing integration of Artificial Intelligence (AI) systems in critical sectors such as healthcare, finance, and

autonomous driving demands not only high accuracy but also a clear understanding of how decisions are made. Explainable

AI (XAI) seeks to bridge the gap between AI performance and human comprehension, ensuring that AI decisions are

transparent, trustworthy, and easy to interpret. This need is underscored by regulatory frameworks such as the European

Union’s General Data Protection Regulation (GDPR), which includes provisions for the right to explanation of automated

decisions [1].

AI models are often considered “black boxes” because their decision-making processes are not easily understood by

humans. This lack of transparency can be problematic, especially in high-stakes domains where understanding the rationale

behind a decision is crucial. Model agnostic techniques are particularly valuable in this context because they provide

insights into AI models without the need to access or alter the underlying algorithms. This universality makes them suitable

for a wide range of industries and applications. For example, in healthcare, understanding the decision-making process of

AI can help clinicians validate diagnoses suggested by AI [2]. In finance, where AI is used to assess creditworthiness or
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manage investments, explainability can help identify biases and ensure fair lending practices [3]. Autonomous driving also

benefits from explainable models, as manufacturers need to demonstrate how vehicles make decisions in critical situations

to regulators and the public [4].

This paper focuses on a comparative analysis of prominent model agnostic techniques: Local Interpretable Model-

agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plots (PDP), Individual

Conditional Expectation (ICE) plots, and Anchors. These techniques have been chosen for their widespread use and

potential applicability across various AI applications. By evaluating these techniques across different datasets and AI

models, this study aims to identify the strengths and limitations of each, providing a guideline on their practical deployment

in industry-specific applications.

The objective of this analysis is threefold: to enhance the understanding of each technique’s operational mechanism,

to evaluate their performance in real-world scenarios, and to aid stakeholders in selecting the most appropriate XAI

technique based on specific needs. The contributions of this paper are intended to help pave the way for more transparent,

understandable, and thus more ethically aligned AI systems across industries.

2. Background

Explainable AI (XAI) has emerged as a critical field in response to the growing complexity and ubiquity of AI

models across various industries. The need for XAI stems from both ethical imperatives and practical necessities, as

decision-making processes become increasingly automated and influential in sensitive domains. The foundational concept

behind XAI is not merely to make AI systems transparent but to make their operations understandable and justifiable to

human users [5].

2.1 XAI Techniques: Model-Specific vs. Model-Agnostic

XAI techniques are typically categorized into two types: model-specific and model-agnostic. Model-specific

techniques are designed to work with particular types of models, exploiting their internal mechanisms to explain their

behavior. For instance, attention mechanisms in neural networks provide insights into which parts of input data are

being prioritized [6]. However, these techniques often lack flexibility as they are not applicable to models with different

architectures.

Model-agnostic techniques, by contrast, are designed to be used with any model, providing flexibility and wide

applicability. This universality makes them particularly valuable in industries where various AI models are employed. For

example, in healthcare, model agnostic tools can help explain AI-driven predictive models for patient outcomes, regardless

of whether they are based on logistic regression or complex neural networks [2]. Similarly, in finance, where models range

from simple linear models for credit scoring to deep learning models for algorithmic trading, model-agnostic explanations

aid in ensuring compliance and transparency across differing methodologies [7].

2.2 Importance of Model Agnostic Techniques in Industry

The appeal of model agnostic techniques in industry is largely due to their adaptability and ease of integration. In the

automotive industry, for instance, where AI models predict vehicle failures or optimize logistics, the ability to apply a

single explanatory technique across different AI models streamlines the process of validation and regulatory compliance

[4]. In the field of retail, companies use a variety of AI models to forecast sales, personalize marketing, and manage supply

chains. Here, model agnostic explanations assist in making these AI-driven decisions understandable to managers and

stakeholders who may not have deep technical knowledge [3].

Furthermore, the implementation of model-agnostic XAI techniques aligns with legal frameworks such as the GDPR,

which requires explanations of decisions made by AI systems affecting EU citizens. This legal requirement makes it

essential for businesses operating in or with the EU to adopt XAI practices that can be applied regardless of the underlying

AI technology [1].
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2.3 Key Model Agnostic Techniques

Several model-agnostic techniques have gained prominence, each with its methodology and application domain:

LIME (Local Interpretable Model-agnostic Explanations) provides local explanations for any classifier’s predictions,

making it suitable for use in medical diagnosis systems [7]. SHAP (SHapley Additive exPlanations), which utilizes game

theory to explain the output of any machine learning model, is frequently used in finance to decompose the allocation of

credit or risk [8]. Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE) plots graphically depict

the effects of the input variables on the predicted outcome, widely applicable from marketing to supply chain analytics.

Anchors explain individual predictions based on the conditions that sufficiently anchor the prediction locally, useful in

scenarios requiring highly reliable explanations, such as autonomous vehicle navigation.

3. Model agnostic techniques analysed

The effectiveness of explainable AI (XAI) hinges on the robustness and flexibility of its underlying techniques.

Model agnostic approaches, notable for their versatility across different types of AI models, provide a broad toolkit for

interpretability. Here, we delve into five prominent techniques, exploring their mechanisms, advantages, and practical

applications in more detail.

3.1 Local Interpretable Model-agnostic Explanations (LIME)

LIME works by approximating the local decision boundary of the model around a prediction. It perturbs the input

data, generating new data points, and observes how the predictions change. LIME then fits a simple, interpretable model

(like a linear regression) to these new samples, weighting them according to their proximity to the original data point, to

explain the prediction locally [7].

In healthcare, LIME helps demystify complex models used for predicting patient outcomes by highlighting influential

factors in individual predictions. This can aid doctors in understanding the model’s reasoning, potentially improving patient

trust and adherence to treatment plans.

The process starts with the data point for which an explanation is needed. The model generates perturbations (slightly

modified versions) of the original data point to create a dataset of neighbors around the original point. It then uses the

black-box model to predict outcomes for each of the perturbed data points. Weights are assigned to each perturbed point

based on its distance from the original data point, with closer points getting higher weights. Researchers typically then use

a simple, interpretable model (e.g., linear regression) to fit the weighted perturbed data points. This model approximates

the decision boundary of the black-box model locally around the original data point. The coefficients of the interpretable

model provide an explanation of how the features of the original data point contribute to its prediction.

This architecture in Figure 1 below highlights the steps LIME uses to generate a local explanation, making the behavior

of complex machine learning models more understandable in specific instances.
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Figure 1. Architecture diagram of LIME

3.2 SHapley Additive exPlanations (SHAP)

SHAP values are derived from game theory, specifically the Shapley values, which are a method to fairly distribute the

payout (prediction) among the players (features). SHAP values measure the contribution of each feature to the prediction

by computing the change in the prediction when a feature is added to a subset of features, averaged over all possible subsets

[8].

In finance, SHAP is used to explain individual loan approvals or rejections by quantifying the contribution of factors

like income, credit history, and debt. This transparency is crucial for regulatory compliance and for improving the fairness

of automated financial decisions.

The SHAP (SHapley Additive exPlanations) model architecture in Figure 2 begins with the Input Data, which

consists of the dataset containing various features. This data is fed into the Model, a machine learning algorithm that

generates Predictions. To interpret these predictions, the SHAP Explainer is used. The explainer employs Shapley

values to assess the contribution of each feature to the model’s output. The calculation process involves considering all

possible subsets of features to determine each feature’s marginal contribution, resulting in Shapley Value Calculations

for each feature. These calculations yield SHAP Values, which quantify the importance of individual features in the

model’s predictions. The results are then utilized for Local Explanations, providing insights into individual predictions,

Global Explanations, highlighting overall feature importance, and Visualizations such as graphs and plots, facilitating a

comprehensive understanding of the model’s behavior and enhancing transparency, trust, and compliance inAI applications.
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Figure 2. Architecture diagram of SHAP

3.3 Partial Dependence Plots (PDP)

PDPs show the marginal effect of one or two features on the predicted outcome. This is achieved by varying the

feature(s) of interest across their range while keeping all other features constant at their average values, thus illustrating

how the target prediction changes with changes in the input features [9].

Retail companies use PDPs to understand how price adjustments or changes in product features might affect sales

volumes, assisting in strategic decision-making and pricing optimization.

3.4 Individual Conditional Expectation (ICE) Plots

ICE plots enhance the information provided by PDPs by plotting the dependency of the prediction on a feature for

individual instances. Unlike PDPs that offer an average effect, ICE plots provide separate lines for each instance to show

how the prediction changes with varying feature values, highlighting heterogeneity across the dataset [10].

In real estate, ICE plots can demonstrate how varying levels of renovations affect house prices on an individual basis,

which can be instrumental for real estate agents and investors when making property enhancements.

3.5 Anchors

Anchors provide explanations by identifying “if-then” rules. These rules explain the conditions under which the same

prediction would always be made, regardless of changes in other features. Anchors are particularly useful for explaining

predictions in cases where certain features strongly anchor the output, providing a high level of certainty [11].
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In autonomous driving, Anchors can clarify under what specific conditions (like weather, speed, and road type) the

vehicle would decide to take a particular action, such as braking or changing lanes, enhancing the safety protocols and

system reliability.

4. Advantages and Weaknesses of Model Agnostic Techniques

4.1 Local Interpretable Model-agnostic Explanations (LIME)

LIME is celebrated for its flexibility, allowing application across any machine learning model, which is particularly

advantageous in personalized medicine for interpreting patient-specific predictions. However, LIME primarily focuses on

local explanations, which may not represent the model’s behavior more broadly, potentially misleading users about general

decision-making processes. Furthermore, LIME’s explanations can vary with minor changes in input data, a feature that

can undermine the reliability of its interpretations [7].

When to Use LIME:

1. When a simple, interpretable explanation is needed for individual predictions.

2. When the model’s global structure is complex but local behavior is linear.

3. When computational resources are limited, as LIME can be more efficient for local explanations.

4.2 SHapley Additive exPlanations (SHAP)

SHAP excels by providing consistent and fair contributions of each feature to predictions, rooted in Shapley values

from cooperative game theory, making it extremely useful in sectors like finance for detailed risk assessment. However, its

application can be computationally intensive, particularly with models having numerous features, which poses challenges

in real-time applications. Additionally, the richness of the data SHAP provides can be overwhelming and may require

specialized knowledge to interpret effectively [8].

When to Use SHAP:

1. When a globally consistent and theoretically sound explanation is required.

2. When dealing with high-stakes applications where accuracy and reliability of explanations are critical.

3. When the computational cost can be managed, possibly with approximations like TreeSHAP for specific model

types (e.g., tree-based models).

4.3 Partial Dependence Plots (PDP)

PDPs are praised for their straightforward visualization of the impact of features on predictions, offering clarity that is

invaluable in strategic decision-making processes such as in retail pricing strategies. However, PDPs do not account for

interactions between features, potentially leading to misleading conclusions where such interactions are significant. They

also become less practical with the increase in the number of features, suffering from the curse of dimensionality [9].

4.4 Individual Conditional Expectation (ICE) Plots

ICE Plots provide detailed insights at the instance level, showing how predictions change with variations in features

for individual data points, which is useful in diverse applications such as real estate valuation. However, the plots can

become cluttered and difficult to interpret with large datasets, and like PDPs, they struggle with scalability when dealing

with numerous features [10].
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4.5 Anchors

Anchors offer high precision in their explanations by defining specific rules under which predictions remain invariant,

making them robust against variations in input data. This precision is particularly beneficial in critical applications like

autonomous driving. Nonetheless, Anchors typically provide narrow insights focused on specific conditions and may not

give a comprehensive understanding of the model’s overall behavior. The complexity of the rules can also vary, with more

complex rules being harder to understand and apply [11].

4.6 Comparative Analysis

Our comparative analysis of model-agnostic techniques highlights their varying strengths and weaknesses across

different dimensions. To provide a holistic view, we present a summary table (Table 1) capturing key characteristics and

performance metrics of each technique.

Table 1. Comparative Analysis of Model-Agnostic Techniques

Technique
Interpretative

Clarity
Computational
Efficiency

Scalability User-Friendliness Application Examples

LIME High Moderate Moderate High Medical diagnosis, Customer churn analysis
SHAP Very High Low Low Moderate Loan approvals, Risk assessments
PDP Moderate High High Very High Sales forecasting, Pricing strategies
ICE High High High Moderate Property valuations, Personalization

Anchors Very High Low Moderate High Autonomous driving, Safety systems

5. Future Directions

The field of Explainable Artificial Intelligence (XAI) is evolving rapidly, with model-agnostic techniques playing a

crucial role in advancing transparency and trust in AI systems across various industries. Looking forward, several key

areas hold promise for further research and development:

5.1 Integration of Model Agnostic Explanations into AI Development Cycles

Future research should focus on integrating explainability seamlessly into the AI development process, not just as a

post-hoc analysis tool. This integration can ensure that AI models are inherently more interpretable and trustworthy from

the ground up. Practical frameworks and tools that embed model-agnostic explanations into the model training process

could enhance the usability and effectiveness of AI applications in real-world scenarios.

5.2 Improving Computational Efficiency

Given the computational demands of techniques like SHAP, especially in large-scale applications, there is a significant

need to develop more efficient algorithms that can provide quick and accurate explanations. Research into approximation

algorithms or the development of hardware better suited to these tasks could mitigate current limitations.

5.3 Enhancing Global Interpretability

While model-agnostic methods excel in local explanations, their ability to provide global insights is often limited.

Future efforts could focus on developing methods that offer a clearer picture of overall model behavior while maintaining

the flexibility and robustness of model-agnostic approaches. This could involve hybrid techniques that combine the

strengths of both local and global explanatory methods.
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5.4 Standardization of Explanation Metrics

The field would benefit from standardized metrics to evaluate the quality and utility of explanations. Such metrics

would enable more objective comparisons between different XAI techniques and facilitate the development of industry

standards for explainable AI. Research into what constitutes an effective explanation from both a technical and human-

centered perspective is needed.

5.5 Addressing Ethical and Legal Implications

As XAI continues to grow, so too will its ethical and legal implications, particularly in sectors like healthcare and

finance where decisions can have profound impacts. Future research should explore the ethical dimensions of explanations,

ensuring that they are not only effective but also fair and non-discriminatory. Additionally, legal scholars and technologists

need to collaborate to ensure that explainability standards meet evolving regulatory requirements.

5.6 Cross-Disciplinary Approaches to Explainability

The complexity of explainability challenges warrants a cross-disciplinary approach that incorporates insights from

psychology, cognitive science, and legal studies. Understanding how different stakeholders perceive and useAI explanations

can inform the design of more effective and user-friendly explanatory tools.

6. Conclusions

This study has conducted a comprehensive comparative analysis of five prominent model agnostic techniques for

explainable artificial intelligence: LIME, SHAP, PDP, ICE, and Anchors. Each technique offers unique advantages and

faces specific challenges in facilitating the interpretability of AI models across various industries. From healthcare to

finance and automotive to retail, the application of these techniques demonstrates a critical balance between computational

efficiency, user friendliness, and the depth of explanation required.

Our findings reveal that techniques like SHAP and LIME provide detailed insights into individual predictions, making

them particularly suitable for high-stakes environments where precise, granular explanations are necessary. However, these

techniques also require considerable computational resources and present challenges in terms of scalability and ease of

interpretation. In our research review, we found that utilizing techniques like SHAP and LIME often requires substantial

computational resources. Specifically, high-performance CPUs and GPUs, with at least 64 GB of RAM, are recommended

to handle the computationally intensive nature of these techniques. For scalability, particularly in large-scale or real-time

applications, it is advisable to leverage distributed computing environments or cloud-based solutions. This setup ensures

that the processing demands of these sophisticated XAI techniques are met efficiently, allowing for the timely generation of

explanations without compromising performance. On the other hand, PDP and ICE, while less computationally intensive,

offer more generalized insights that are easier for non-experts to understand but may overlook important interactions

between features.

The study highlights the importance of selecting the right XAI technique based on specific industry needs and

constraints. For instance, in sectors where decisions have significant personal or financial implications, such as healthcare

and finance, the depth and fidelity of the explanation provided by SHAP and LIME are invaluable. Conversely, in sectors

like retail, where strategic decisions often rely on broader data trends, PDP and ICE plots provide adequate insights with

less complexity.

Looking forward, the field of explainable AI faces several critical challenges. These include improving the

computational efficiency of complex techniques, enhancing the global interpretability of model behaviors, and developing

standardized metrics for evaluating explanation quality. Moreover, as AI systems become increasingly prevalent across

various sectors, the ethical and legal implications of their decisions will necessitate further rigorous research and cross-

disciplinary collaboration to ensure that AI remains both innovative and accountable.
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In conclusion, this analysis underscores the necessity of continued development in explainable AI technologies. As

AI continues to evolve, so too must the techniques that allow humans to understand and trust these advanced systems.

By advancing research in model agnostic explainable AI, we can help ensure that AI technologies are used responsibly,

ethically, and effectively across all sectors of society.

Conflict of interest

There is no conflict of interest for this study

References

[1] B. Goodman and S. Flaxman, “European Union regulations on algorithmic decision-making and a ‘right to

explanation’,” AI Mag., vol. 38, no. 3, pp. 50–57, 2017.

[2] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller, “Causability and explainability of artificial intelligence

in medicine,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 9, no. 4, p. e1312, 2019.

[3] J. Chen and S. M. Asch, “Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations,”

N. Engl. J. Med., vol. 376, no. 26, pp. 2507–2509, 2018.

[4] B. Kim, “Interpretable Machine Learning inAutonomous Driving: Understanding the Decisions of Neural Networks,”

Neural Netw., vol. 134, pp. 105–115, 2021.

[5] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges

toward responsible AI,” Inf. Fusion, vol. 58, pp. 82–115, 2020.

[6] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst. 30 (NIPS 2017), Long Beach,

CA, USA, Dec. 4–9, 2017.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’: Explaining the predictions of any classifier,” in

Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Francisco, CA, USA, Aug. 13–17, 2016.

[8] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Proc. Adv. Neural Inf.

Process. Syst. 30 (NIPS 2017), Long Beach, CA, USA, Dec. 4–9, 2017.

[9] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Ann. Stat., vol. 29, no. 5, pp.

1189–1232, 2001.

[10] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking inside the black box: Visualizing statistical learning

with plots of individual conditional expectation,” J. Comput. Graph. Stat., vol. 24, no. 1, pp. 44–65, 2015.

[11] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic explanations,” in Proc. AAAI

Conf. Artif. Intell., New Orleans, LA, USA, Feb. 2–7, 2018.

Volume 3 Issue 2|2024| 33 Research Reports on Computer Science


	Introduction
	Background
	XAI Techniques: Model-Specific vs. Model-Agnostic
	Importance of Model Agnostic Techniques in Industry
	Key Model Agnostic Techniques

	Model agnostic techniques analysed
	Local Interpretable Model-agnostic Explanations (LIME)
	SHapley Additive exPlanations (SHAP)
	Partial Dependence Plots (PDP)
	Individual Conditional Expectation (ICE) Plots
	Anchors

	Advantages and Weaknesses of Model Agnostic Techniques
	Local Interpretable Model-agnostic Explanations (LIME)
	SHapley Additive exPlanations (SHAP)
	Partial Dependence Plots (PDP)
	Individual Conditional Expectation (ICE) Plots
	Anchors
	Comparative Analysis

	Future Directions
	Integration of Model Agnostic Explanations into AI Development Cycles
	Improving Computational Efficiency
	Enhancing Global Interpretability
	Standardization of Explanation Metrics
	Addressing Ethical and Legal Implications
	Cross-Disciplinary Approaches to Explainability

	Conclusions

