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Abstract: Modern sedentary lifestyle has given rise to a number of health issues; diabetes mellitus is one of them, 
another worldwide emergency, which is usually attributed either by deficiency or by insensitivity of insulin hormone; 
the master-regulator of blood glucose level. Seaweeds are rich reservoirs of a plethora of bioactive compounds with 
a great assortment of therapeutic potential. The goal of this communication is to represent the state-of-the-art about 
what is known for the anti-hyperglycemic properties recognized in seaweeds, emphasizing about their assets of several 
bioactive principles, their modes of action over targets of pharmacological interest, in addition to their precise extraction 
procedures. Various bioactive molecules from seaweed origin, mainly polyphenols, can inhibit several drug targets 
like α-glucosidase, α-amylase, aldose reductase, protein tyrosine phosphatase 1B, angiotensin-converting enzymes and 
dipeptidyl peptidase-4 to achieve good glycemic control. 
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1. Introduction
Seaweeds, mostly constituted by brown and red macroalgal assemblages, are a great reservoir of a number of 

natural anti-diabetic agents due to the presence of plentiful amount of polyphenols, vitamins, carotenoids, unsaturated 
fatty acids, pigments including phycoerythrin, phycobilins and many more with barely any side effects. The propensity 
of their cell wall to retain excellent quantities of trace elements, as well as other marine minerals makes them legendary 
as dietary food supplements with immense biomedical interest [1]. In many regions of East Asia, mostly in the coastal 
countries, seaweeds are taken as a wholesome meal in their delicacy [2]. For example, Japanese used to consume 5.3 g 
of seaweed per day in their daily diet [3]. Inactive lifestyle, unhealthy dietary choices associated with rapid urbanization 
has increased the risk of diabetic complications worldwide, verging on epidemic proportions over both the developed 
and developing nations. Rigorous studies have established seaweeds as skilful defenders against a range of pernicious 
health issues including hyperlipidemia [4], hyperglycemia [5], breast cancer [6] and other cardiovascular hassles [7].

Tanemura et al. have reported that consumption of the sporophylls of Undaria pinnatifida (Wakame) reduces post-
prandial blood glucose level, probably by virtue of their plentiful fucoxanthin content [8]. Paradis et al. demonstrated 
the role of commercial macro algal blend containing Fucus vesiculosus and Ascophyllum nodosum in insulin sensitivity 
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and regulation in humans, as measured using Cederholm index after sugar consumption [9]. A study involving Korean 
population, suggested the relevance of Undaria pinnatifida and Porphyra yezoensis as anti-diabetic diet [10]. Sanger et 
al. have elucidated the role of one edible marine seaweed Halymenia durvilae in diabetes management [11]. Aqueous 
extract of H. durvilae appeared to show excellent efficiency to inhibit α-glucosidase enzyme, one of the major drug 
targets for diabetes management, with IC50 value 4.34±0.32 mg/mL. Yan et al. have used the aqueous ethanolic extract 
of Enteromorpha prolifera over streptozotocin-induced type 2 diabetic mice, fed with high-sucrose/high-fat diet [12]. 
The flavonoid-rich fraction, containing the active principle, EPW3 (<3 kDa), characterized through high-resolution 
UPLC-Q-TOF-MS/MS system has been reported to diminish the blood glucose level at fasting, enhance oral glucose 
toleration and reduce liver and kidney injury. They attributed the in behind molecular mechanism through q-PCR 
analysis and according to the result, EPW3 appeared to boost up the glucose consumption and insulin sensitivity 
through restraining JNK and by invigorating PI3K/Akt signalling cascades. The diabetes-mitigating properties of six 
different seaweeds; Ulva lactuca (Chlorophyta), Padina pavonica, Sargassum acinarium, S. muticum and Turbinaria 
decurrens (Phaeophyta) and Pterocladia capillacea (Rhodophyta) have been checked by Ismail et al. [13]. The 
maximum anti-hyperglycemic activity has been exerted from the acetone extract of T. decurrens with an IC50 value 
of 4.37 mg/mL (96.1% inhibition potency) in comparison with Acarbose, used as positive control, which inhibits the 
starch-degrading α-amylase enzyme. Likewise, it has been shown to inhibit the α-glucosidase enzyme at a concentration 
of 90 mg/mL, with IC50 value of 2.84 mg/mL (97.4% inhibition potency). Hardoko et al. measured the α-glucosidase 
inhibition potency of the laminaran fraction from Sargassum duplicatum with IC50 value of 36.13 ppm, characterization 
has been done using fourier transform infra-red spectroscopy (FTIR) analysis and λ-max absorption spectroscopy 
[14]. Mohapatra et al. have emphasized the anti-hyperglycemic effect of ethyl-acetate extract of Ulva fasciata through 
inhibition of α-amylase [15]. Radhika and Priya have emphasized the effect of Acanthophora spicifera over alloxan 
induced diabetes [16]. Recently, another group from Vietnam has studied the role of Laurencia dendroidea using 80% 
methanol for extraction and fractionated with n-hexane, chloroform, ethyl acetate and butanol. The ethyl acetate fraction 
was with strongest α-glucosidase inhibitory property, probably due to the enormity in polyphenol content in this fraction 
[17]. The possible mechanism relies on the hindrance of the active sites of the diabetic enzymes by the polyphenolic 
substances, thereby altering their catalytic efficiency [18]. 

2. Pathophysiology of diabetes mellitus - The worldwide emergency
Diabetes mellitus (DM), a type of chronic hyperglycemia, is one of the most leading health hazards of this century, 

characterised by deficiency and resistance of insulin hormone imparting extremity in the blood glucose level. Some 
other complications associated with DM are hypertension, neuropathy, nephropathy, several vascular disorders and 
many more [19]. Normally, pancreatic β-cells secrete insulin, which maintains the blood glucose level at its optimum 
level and promotes body cells to feed glucose for energy production. Loss of insulin sensitivity along with diminution 
of insulin production leads to blood glucose accumulation at an alarming level, resulting in the outcome of diabetic 
complications [20]. Based on the etiological point of view, DM is of two types- (i) Type 1 DM, attributed due to auto-
immune demolition of the pancreatic β-cells resulting from insulin deprivation, and (ii) Type 2 DM, much more 
prevalent than the former one [21], accounts for the insulin-insensitivity as well as insulin-resistance of body cells due 
to excessive glucose production by liver cells, accompanied by poor glucose-consumption by muscle and adipose cells 
[22]. Current clinical approach mainly focuses on the manipulation of several starch-hydrolysing enzymes (for example, 
pancreatic α-amylase) as well as glucose-consumers like intestinal α-glucosidase to combat this multifactorial disorder 
[23].  

3. Bioactive principles from seaweeds with anti-diabetic potency
Seaweeds are mostly marine macroalgae, majorly categorised into three distinct groups based on their pigment 

composition- green algae (Chlorophyta), red algae (Rhodophyta) and brown algae (Phaeophyta) [24]. They are a great 
asset of a number of active principles like polyphenols, poly- and monounsaturated fatty acids, carotenoids, dietary 
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fibres among others with immense health benefits, having anti-hyperglycemic, antioxidant, cytotoxic as well as anti-
inflammatory properties [25]. Some of which are discussed in the following section.

3.1 Monounsaturated fatty acids (MUFA)

Although the exact mechanism for MUFA-mediated diabetes management is not clear cut, it has been attributed 
to up-regulate several glucose transporter proteins (for example GLUT1, GLUT4) thereby promoting intracellular 
glucose uptake besides restricting destruction of pancreatic-β cells [26]. Sabin et al. have reported enhanced insulin 
sensitivity due to MUFA-mediated interference over IRS/PI3K insulin pathway in association with elevated GLUT4 
translocation across the cell membrane [27]. Dietary MUFAs also play a significant role in diabetes prevention through 
the amelioration of glucagon-like peptide (GLP-1) [28] and adiponectin levels [29]. 

3.2 Polyunsaturated fatty acids (PUFA)

As about 2% of the dry weight of seaweed constitutes different kinds of PUFAs, most of which are omega-3  
(Figure 1) and omega-6 fatty acids, important components for healthy human diet [30]. But the members of Chlorophyta 
(except: Ulva sp.) have lesser lipid content in comparison with other phaeophycean and rhodophycean members [31]. 
The possible mechanism relies upon the improvement of insulin sensitivity and rate of glucose consumption [32]. 
Omega-3 PUFA can also check insulin insensitivity by inhibiting toll-like receptors (TLR) like TLR-2 and TLR-4 [33]. 
Other long chain PUFAs alleviates the concentration of tumour necrosis factor-α and pro-inflammatory interleukin-1ra, 
whereby elevating the concentration of different anti-inflammatory cytokines like interleukin-10 [34]. Moreover, Jump 
et al. discussed the genetic interplay behind the PUFA-mediated hyperglycemic mitigation [35]. They have highlighted 
the role of a number of transcription factors like sterol-regulatory element-binding protein-1c, hepatic nuclear factors 
and liver X receptor etc. which are integral part of fat and sugar metabolism.

Figure 1. Different seaweed-derived PUFAs of biomedical interest 

3.3 Dietary fibres

Including dietary fibres in daily diet not only reduces body weight, glycemic level and inflammation, but also 
enhance satiety as well as hormonal interactions [36]. Several seaweed-based food items like arroz-caldo (porridge) 
incorporated with lambda-carrageenan (Figure 2) [37], Nori (Porphyra) has been proved to have anti-hyperglycemic 
potential [38]. Vaugelade et al. have studied the effects of dietary-fibre extracts from Palmaria palmata, Laminaria 
digitata and Eucheuma cottonii, over insulin sensitivity and intestinal glucose absorption in pigs [39].

Eicosapentaenoic acid (an omega-3 fatty acid)

Docosahexaenoic acid (an omega-3 fatty acid)
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Figure 2. Structure of lambda carrageenan

3.4 Polyphenols

Polyphenols from seaweeds are mainly constituted by phlorotannins, derived from phloroglucinol subunits. The 
phenol groups, present in their molecular architecture, are responsible for mitigation of diabetes related oxidative stress. 
Some important seaweed-derived polyphenols, with immense therapeutic interest are eckols, fucophlorethols, fucols and 
carmalols (Figure 3) [25].

Figure 3. Different phlorotannins of seaweed-origin 
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3.5 Carotenoids 

Brown seaweeds involve a great array of pigments and the authoritative one is fucoxanthin (Figure 4). It has 
tremendous anticarcinogenic, antihyperglycemic, antioxidative potential due to the presence of oxygenic functional 
group and novel allenic bond in their structural organization.

Figure 4. Molecular structure of fucoxanthin

4. Novel trends for bioactive compounds extraction from seaweeds
Recent technological approaches mainly lean on four different techniques for extraction of therapeutically relevant 

compounds from seaweeds, which are- Supercritical Fluid Extraction (SFE), Ultrasound-Assisted Extraction (UAE), 
Subcritical Water Extraction (SWE) and Microwave-Assisted Extraction (MAE) [25]. 

4.1 Ultrasound-assisted extraction (UAE)

UAE can be done under low temperatures, desired for extraction of thermolabile active principles and the working 
time is comparatively less [40], which makes it affordable than the other sophisticated trends [41]. This technique 
deals with the application of ultrasonic damage of biological matrix, triggering the release of active principles. The 
frequency usually ranges between 20 kHz to 100 kHz. Application of this substantial frequency leads to cavitation and 
implosive burst of cells.  In this approach, the goal is mainly achieved by two ways- either by using ultrasonic probe 
(direct sonication) operating at a frequency of 20 kHz or by using ultrasonic bath at frequency of 40-50 kHz (indirect 
sonication). The difference is that during the indirect method, the sample is plunged with ultrasonic bath, whereas the 
direct method deals with the direct injection of the ultrasonic probe within the sample [42]. This technique is efficiently 
utilised for antioxidants and pigment extraction under the regime of proper solvents with appropriate solid to solvent 
ratio.

Dang et al. standardised the protocol for ultrasonic release of antioxidants from the alga Hormosira banksii [43]. 
The highest yield has been obtained at a temperature of 30°C for one hour under 150W power. Similarly, the highest 
yield has been obtained from the red seaweed Laurencia obtusa after treatment at 50°C temperature for 45 minutes 
with 250 W power and with a solvent to seaweed ratio of 30:1 mL/g [44]. However, Mittal et al. have shown that 
amalgamation of maceration with ultrasonication results in enhanced phycobiliproteins extraction from another red 
seaweed Gelidium pusillum, probably due to better cell lysis [45]. 

4.2 Microwave-assisted extraction (MAE)

In this trend, the energy of microwave gets absorbed by the polar molecules present over the cell surface, 
triggering cellular disruption, mainly due to dipole rotation and ionic conduction. Disrupted cells fasten the mass 
transfer reciprocated with solvent diffusion [46]. MAE extraction procedure can be operated either in open or in closed 
system. The former one is safer and economically viable as it relies on the application of atmospheric pressure and here 
large sample sizes can be processed at less time and is also worthy for thermolabile components [47]. This technique 
is mainly employed for polyphenol and polysaccharide extraction under optimized parameters like degree of biomass 
processing, solid-to-solvent ratio, temperature and frequency of microwave etc. [48]. 
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4.3 Subcritical water extraction (SWE)

This method deals with a very short exposure (5-10 minutes) of samples under temperature (50-200°C) and 
pressure extremes (50-300 psi) for extraction, so the mobile phase (liquid) is maintained at its critical range, below 
its boiling point [41]. Here, water is used for extraction, instead of other costly organic solvents, therefore is usually 
attributed for extraction of non-polar compounds. del Pilar Sanchez-Camargo et al. have reported that enzymatic 
pre-treatment of samples can enhance the yield of several polyphenols of therapeutic interests [49]. But, this is not 
preferable for the extraction of thermolabile compounds as it is operated under high temperatures. Plaza et al. prepared 
a comparative data set with six different macroalgae [50]. They pointed out the fractions obtained at higher temperatures 
impart better antioxidant property probably due to Maillard and Caramelization reactions. 

4.4 Supercritical fluid extraction (SFE)

Here, the reactions are operated above the critical range in terms of temperature, pressure and other characteristics 
of both liquids and gases [41]. Supercritical CO2 (SC-CO2) is used as a solvent and better yield is achieved through 
increased mass transfer due to low viscosity and higher diffusion coefficient of supercritical CO2. The extra-added 
advantage is the less critical temperature and pressure of CO2, which prevents the degradation of extracted principles [51]. 
This technique is usually employed for the extraction of fatty acids, tocopherols, phytosterols, carotenoids, triglycerides 
and phenolic compounds [49].

The advantages and limitations of these extraction methodologies are summarized in Table 1.

Table 1. The advantages and limitations of extraction techniques

Extraction techniques Advantages Limitations References

Ultrasound-Assisted 
Extraction (UAE)

•	 Suitable for extraction of thermolabile 
compounds as it is operated under low 
temperature. 

•	 Solvent requirement and working time are 
lesser. 

•	 The surface area of contact between the 
solvent and extractable compound increases 
for better penetration of solvents into 
the sample matrix to release bioactive 
compounds.

•	 Acoustic cavitation may promote free 
radical synthesis, which in turn triggers lipid 
oxidation. 

•	 Large scale extraction is quite difficult.
•	 Huge power demand.

[52]

Microwave-Assisted 
Extraction (MAE)

•	 Shorter extraction time and a higher 
extraction yield of the target analytes.

•	 Simultaneous analyze of several samples at 
a time.

•	 Close- or open-vessel system can be used for 
extraction.

•	 Methanol, ethanol and ethyl acetate absorb 
the microwave energy and convert it into 
heat, which helps to break cell wall for 
easy penetration of analytes into the solvent 
matrix. 

•	 Operating costs are high with high impurities 
obtained in the extract. 

•	 Ready-to-use extract.

[53]

Subcritical Water Extraction 
(SWE)

•	 Water can be used for extraction instead of 
organic solvents in an environment-friendly 
way. 

•	 Permeability of solvent into the material is 
enhanced results in higher extraction yield. 

•	 Extraction temperature facilitates the yield of 
polyphenols and antioxidant activity.

•	 High temperature promotes the degradation 
of thermolabile compounds.

[25]

Supercritical Fluid Extraction 
(SFE)

•	 As CO2 is cheap and easily available at high 
purity, it also lacks toxicity and flammability.

•	 The rapid penetration through the pores 
of heterogeneous matrices due to higher 
diffusion coefficient and lower viscosity.

•	 For the preservation of bioactive compounds 
and preventing degradation, CO2 has low 
critical temperature and pressure.

As supercritical CO2 (SC-CO2) only 
extracts compounds of low polarity and 
non-polar compounds, it is better to use the 
combination of SC-CO2 and a low amount of 
co-polar solvents like ethanol and methanol 
for getting better results.

[25]
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5. Pharmacological targets to achieve good glycemic control
Some important drug targets for controlling post-prandial hyperglycemia are in the following section.

5.1 Sugar-hydrolysing enzymes

The synergistic activity of a number of glycoside hydrolases like α-amylase, α-glucosidase helps in digestion 
of starch within human body. Enzyme α-amylase hydrolyses the α-bonds of the dietary starch granules, whereas 
α-glucosidase catalyses the final step for glucose synthesis from dietary starch and other disaccharides. Thus, restriction 
of these enzyme activities alleviates the post-prandial blood sugar level and can be employed as an efficient anti-
hyperglycemic drug target [54].

Lee and Jeon emphasized the potential of family Lessoniaceae and the genus Ecklonia sp. as these groups are a 
great natural reservoir of a wide variety of polyphenols including phlorofucofuroeckol-A, 6,6′-bieckol, 7- phloroeckol, 
etc. [55]. They tested the massive inhibitory property of methanolic extracts of Ecklonia cava and E. stolonifera over 
α-glucosidase activity, using acarbose as positive control. They have shown that crude extracts of seaweed-derived 
phlorotannins including dieckol, diphlorethohydroxycarmalol effectively reduce the post-prandial blood sugar level in 
diabetes-induced mice. Consistently, Abdelsalam et al. advocated the better anti-hyperglycemic efficacy of dieckol (IC50 
value of 1.61 μM) and phlorofucofuroeckol-A (IC50 value of 1.37 μM) in comparison to standard drug acarbose (IC50 
value of 51.65 μM) [56]. They have also demonstrated the anti-diabetic property of eckol (IC50: 11.16 μM) extracted 
from Ecklonia maxima. They have performed a comparative analysis with the metabolites of Eisenia bicyclis (Arame), 
and reported fucofuroeckol A (IC50 value of 42.91 μM) to be better α-amylase inhibitor than dioxinodehydroeckol (IC50 
value of 472.70 μM). Moon et al. elucidated α-amylase inhibitory property of polyphenols like dieckol, eckol, and 
7-phloroeckol from Eisenia bicyclis [57]. Gotama et al. studied that phlorotannins from Sargassum hystrix effectively 
reduces preprandial (186.4 mg/mL) and post-prandial (186.9 mg/mL) blood glucose levels of streptozotocin-induced 
diabetic mice at a dose of 300 mg/kg without any significant effect over body-weight, compared to the standard drug 
glibenclamide, which at a dose of 5 mg/kg keeps the pre-prandial blood glucose level at 195.6 mg/mL and postprandial 
glucose level at 104.8 mg/mL [58]. Consistent with that, Senthilkumar et al. have shown that aqueous extract of Padina 
boergesenii alleviates the action of gluconeogenic enzymes better than glibenclamide in hyperglycemic rats [59]. 
Recently, Gunathilaka et al. have suggested the α-amylase and α-glucosidase inhibitory role of the polyphenol-rich 
extracts of Chnoospora minima [60].

5.2 Aldose reductase

The enzyme aldose reductase catalyses sorbitol synthesis from glucose using NADPH cofactor via polyol pathway. 
Intracellular sorbitol extreme may serve as a potential biomarker for Type 2 DM and causes diabetic neuropathy. On that 
account, inhibitors of aldose reductase are of immense therapeutic interest [61].

Jung et al. examined the rat lens aldose reductase inhibitory activity of the dichloromethane fraction of Saccharina 
japonica, which has been achieved probably due to the presence of porphyrin compounds like pheophytin-A and 
pheophorbide-A [62]. The carboxyl group (not linked with phytyl group) at the C-172 position of the porphyrin ring is 
responsible for this inhibitory property of pheophorbide-A. Lee et al. worked with the ethyl acetate fraction of Eisenia 
bicyclis over human recombinant aldose reductase and the result revealed better inhibition potency in comparison with 
reference drug epalrestat [63].

5.3 Dipeptidyl peptidase-4

This enzyme helps in lowering the incretin levels, like glucagon-like peptide-1 (GLP-1), a gut hormone which 
stimulates insulin release to control hyperglycemic blood sugar level among the patients suffering Type 2 DM. 
Interestingly, the culmination of GLP-1 over insulin secretion successively deteriorates when blood glucose level 
reaches up to euglycemic level. Hence, inhibition of dipeptidyl peptidase-4 may significantly enhance GLP-1 level, 
promoting insulin secretion sustaining glucose homeostasis [64].

Maneesh et al. advocated the DPP-4 inhibitory activity of ethyl acetate: methanol fraction of Sargassum wightii 
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due to richness in phenolic content [65]. Unnikrishnan et al. evaluated the DPP-4 enzyme inhibitory property of the 
methanolic extract of Turbinaria ornata with 55.4% efficiency at a concentration of 80 μg/mL in comparison with 
reference drug diprotin A (65%) [66].

5.4 Protein tyrosine phosphatase 1B (PTP 1B)

PTP 1B is a negative regulator of the insulin signalling cascade, present on the cytosolic face of the membrane of 
endoplasmic reticulum [56]. The insulin receptor is a classic example of receptor tyrosine kinase family proteins, which 
when binds to insulin, autophosphorylates itself in its specific tyrosine residues triggering several downstream signalling 
reactions. But PTP 1B, through dephosphorylation renders the insulin receptor inactive. Therefore, inhibition of PTP 1B 
may remove this hindrance over insulin signalling pathway [67].

Ali et al. evaluated the PTP 1B inhibitory activity of the hexane fraction (IC50 value of 1.83 μg/mL) of Sargassum 
serratifolium [68] in comparison with positive control ursolic acid (IC50 value of 1.12 μg/mL). Later, from the hexane 
fraction, they isolated three different quinones; sargachromenol, sargahydroquinoic acid and sargaquinoic acid. Of 
these three, sargahydroquinoic acid possesses the highest PTP1B inhibitory activity (IC50 value of 5.14 μg/mL) in 
the treatment of Type 2 DM. Feng et al. worked with another brown seaweed Dictyopteris undulata, and isolated 
12 different stigmastane-type steroids; of which, (24S)-7b-methoxy-stigmasta-5,28-diene-3b,24-diol and (24S)-7a-
methoxy-stigmasta-5,28-diene-3b,24-diol exhibit anti-hyperglycemic activity [69]. 

5.5 Angiotensin-converting enzyme

This enzyme catalyses the synthesis of angiotensin II into angiotensin I and is an integral part of the renin-
angiotensin-aldosterone system. The former one stimulates aldosterone release from adrenal cortex, intensifying water 
and sodium absorption which is consistent with elevating blood pressure level, leading to several microvascular and 
macrovascular problems, common among Type 2 DM patients. So, inhibition of this enzyme may help to keep the blood 
pressure under control among hyperglycemic sufferers [70].

Thomas and Kim worked with Ecklonia stolonifera [71]. The results revealed the phlorotannin-rich fraction 
containing eckol (70.82 ± 0.25 μM), dieckol (34.25 ± 3.56 μM), and phlorofucofuroeckol-A (12.74 ± 0.15 μM) exerts 
inhibitory activity over angiotensin-converting enzyme. Among which, dieckol inhibits noncompetitively. Therefore, 
it can be a potential candidate to mitigate diabetes-associated blood pressure deviation. Paiva et al. have reported the 
better efficiency of the protein hydrolysate fraction (IC50 value of 0.5 mg/mL) of Fucus spiralis to inhibit angiotensin-
converting enzyme, in comparison with reference drug captopril (IC50 value of 0.163 mg/mL) [72]. Similarly, 
phloroglucinol (IC50 value of 56.96 μg/mL) containing ethyl acetate fraction of Sargassum wightii has greater efficacy 
to inhibit angiotensin-converting enzyme, in comparison with the positive control captopril (IC50 value of 51.79 μg/
mL) [73].

5.6 Suppression of advanced glycation

Advanced glycation is a complex process, the end product of which leads to several vascular disorders associated 
with diabetic complications in addition to renal failure and other chronic symptoms. Thus, inhibition of the formation 
and cumulation of advanced glycation end products may diminish the diabetic problems to some extent [74].

Shakambari et al. have evaluated the phlorotannin-mediated inhibition of advanced glycation end product 
formation in glucose-induced diabetic Caenorhabditis elegans [75]. They conducted their study with three different taxa, 
and the results revealed Padina pavonica (IC50 value of 15.16 ± 0.26 μg/mL) has better inhibitory property than the 
other two strains; Turbinaria ornata (IC50 value of 22.7 ± 0.3 μg/mL) and Sargassum polycystum (IC50 value of 35.245 
± 2.3 μg/mL) in comparison with positive control thiamine (IC50 value of 263 μg/mL). Sugiura et al. have studied the 
antiglycation activities of phlorotannins-rich extracts of Ecklonia cava, which have inhibitory action over fluorescence 
stained advanced glycation end products formation [76]. In addition, some recent works with seaweeds for the prospect 
of anti-diabetic drug development, are stipulated in Table 2.
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Table 2. Recent works with seaweeds for the prospect of anti-diabetic drug development

Seaweed Active principles Mode of action Extraction solvents References.

Enteromorpha prolifera Flavonoids
Reduces blood glucose level by 
upregulating IRS1/PI3K/AKT 

pathway and suppressing JNK1/2 
pathway in liver

95% ethanol [12]

Turbinaria decurrens Cyclotrisiloxane, hexamethyl
Antioxidant activity.

α-amylase (96.1%) and 
α-glucosidase (97.4%) inhibitory 

property.
Acetone [13]

Sargassum duplicatum
Turbinaria decurens Laminaran, fucoidan α-glucosidase inhibitory property.

85% ethanol (ethanol 
and seaweed at a ratio 

of 1 : 4)
[14]

Ulva fasciata - In vitro α-amylase inhibitory 
property. Ethyl acetate [15]

Laurencia dendroidea -
α-glucosidase inhibitory property.

DPPH radical scavenging properties 
comparable with a commercial 
antidiabetic drug (gliclazide).

80% aqueous methanol [17]

Undaria pinnatifida Fucoxanthin

Alleviation of visceral fat mass, 
hepatic glucose production and 

hyperinsulinemia.
Amelioration of hepatic glucose 
storage and fatty acid oxidation.

Ethanol [77]

Ulva rigida Polyphenols
Alleviation of post-prandial blood 

sugar level.
Antioxidant activity.

Ethanol [78]

Polyopes lancifolia Bis (2,3 dibromo-4,5 
dihydroxybenzy-l) ether

Reduces blood-glucose uptake.
α-glucosidase inhibitory property.

Methanol-water 
(8 : 2, v/v, 1 L) [79]

Ishige okamurae Diphlorethohydroxycarmalol α-glucosidase and α-amylase 
inhibition. 80% methanol [80]

Sargassum horneri Fucoidan Maintains the blood-glucose level in 
an insulin dose-dependent manner. 70% ethanol [81]

Alaria esculenta - DPP-4 inhibitory property 
(91.3 ± 0.1%) Ethanol [82]

Ulva rigida - Upregulates GLP-1 secretion and 
GLP-1 synthesis Ethanol [82]

Codium fragile -

α-glucosidase inhibitory property.
Promotes phosphorylation of AMP-
activated protein kinase (AMPK).
Ameliorates glucose utilization in 

myotubes.

Water [83]

Undaria pinnatifida Sulfated polysaccharides

Stimulates the glucose absorption in 
insulin-insensitive HepG2 cells.
Reduces fasting blood glucose 

levels, relieve insulin resistance, 
Upregulates hepatic glycogen 

synthesis in HFD/STZ-induced 
hyperglycemic mice.

95% ethanol [84]

Cystoseira compressa Phlorotannins
Reduces serum glucose, liver 

malondialdehyde level and inhibit 
α-amylase, glucosidase enzymes 

alongside.
- [85]

Ecklonia cava Dieckol Activation of Akt and AMPK 
signalling pathways. 80% aqueous ethanol [86]

Ecklonia maxima Fucoidan Mixed type inhibitor of 
α-glucosidase. Distilled water [87]

Bryothamnion seaforthii Lectin

Exerts hypoglycemic and 
hypolipidemic effects. 

Reduces insulin insensitivity,
Stimulates the action of pancreatic 

β-cell toward oxidative stress.

- [88]
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6. Epilogue
In this article, we have tried to account for the mountainous health benefits of seaweeds, emphasizing their ability 

for diabetes management. In addition, the precise pathophysiology of diabetes mellitus and the targets of therapeutic 
interest have been taken into consideration. Different bioactive compounds from seaweeds with anti-hyperglycemic 
effect and novel technologies for their extraction procedure have also been discussed. These green extraction techniques 
have the potential for their industrial implementation. But protocol optimization is the major task for different samples 
to get better yield with desired chemical composition in an affordable way. These bioactive principles from macroalgal 
origin and their mechanism of action are quite similar to other known anti-hyperglycemic drugs. Their propensity to 
hamper the working scheme of several carbohydrate-hydrolytic enzymes like α-amylase and α-glucosidase provides 
quality control to the rate of sugar digestion in quite a similar fashion to reference drug acarbose; while the amelioration 
of insulin perception and incretin hormones stimulation are related to metformin and other DPP-4 inhibitors 
respectively. Moreover, bioactive compounds from seaweed may also exert their potentiality by enhancing cellular 
glucose consumption, impeding the activity of enzymes like aldose reductase, DPP-4 and PTP1B, retarding AGE 
formation, β-cell cytoprotection, anti-obesity action and the associated inflammatory problems as well. Hence, seaweeds 
and seaweed-derived bioactive principles possess stupendous prospective to be used in Type 2 DM management either 
as a part of dietary intake or as purified therapeutic supplements. 
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