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Abstract: Anionic dyes, like tartrazine, have harmful effects on aquatic life and humans and therefore, their elimination
from industrial effluents needs to be taken very seriously. The elimination of tartrazine yellow from wastewater resulted 
in the application of adsorption as an economical and effective treatment approach. The use of regenerated bleaching 
earth and regenerated bleaching earth modified with urea as adsorbents for tartrazine yellow from simulated wastewater 
served as the foundation for this study. The sorption process was run in batch mode with different process parameters. 
The Fourier transform infrared spectrophotometry (FTIR) and X-ray diffraction analyses of the adsorptive material 
demonstrated the existence of surface functional groups while scanning electron microscopy revealed a porous structure. 
At a pH of 3, with an adsorbent dosage of 50 mg and a dye concentration of 50 mg/L, the highest dye uptake was 
achieved with an adsorption efficiency of 48%. The models that best matched the kinetics were the pseudo-first-order, 
pseudo-second-order and Elovich (R2 > 0.95) models. The dye fixation process took 140 minutes to reach adsorption 
equilibrium. The outcomes of the sorption study demonstrated competition between chemisorption and physisorption, 
and that bleaching earth can be successfully regenerated, and used as an efficient sorbent for eliminating tartrazine 
yellow in an aqueous solution.
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1. Introduction
Owing to their large specific surface areas and high adsorption capacities, MOFs (Metal organic frameworks) and 

activated carbons are commonly utilized in the adsorption process.1,2 Nevertheless, this method is rather costly. As a 
result, using novel adsorbents made of abundantly available natural materials like clays, which are naturally occurring 
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aluminosilicates was given more importance.3 Clay materials often possess limited adsorption capacities and exist in a 
range of natural forms. As such, they are not widely used for the sorption of pollutants. They undergo modifications like 
chemical or thermal activation to increase their adsorption capabilities.4

While natural clays hold promise as low-cost adsorbents, their inherent limitations in adsorption capacity and 
selectivity hinder their widespread application. This study addresses this challenge by investigating the regeneration and 
urea modification of bleaching earth, a waste product from the edible oil industry, to improve its capacity for tartrazine 
dye adsorption.

This research focuses on enhancing the adsorption performance of bleaching earth through regeneration and urea 
modification. Regeneration allows for the reuse of waste material, promoting sustainability. Urea modification, which 
will be further explained later, is specifically chosen to target an improvement in either the adsorption capacity (the 
total amount of dye the material can hold). By understanding the impact of regeneration and urea modification, we 
can develop a more efficient and cost-effective method for dye removal from wastewater. Bleaching earth, commonly 
known as sulfuric acid-activated clay is extensively used in the food processing industry to decolorize edible oils. This 
material is very effective at removing unwanted materials from oil, including soap residues, heavy metal traces, and 
colors like β- and α-carotene.5-6 Bleaching earth (BE@oil) is a detritus that is produced when the sulfuric acid-activated 
clay material used to decolorize oil loses its ability to adsorb any further. This solid material is considered as waste and 
dumped untreated into the environment. For this reason, much research is being diverted to the regeneration and reuse 
of this clay waste to minimize the danger of pollution.7-10

Dyes are frequently used in the textile, rubber, paper, plastic, cosmetic, and other sectors to colour various 
products. Residual dyes in effluents are nearly always the primary waste product in these industries. Due to their 
chemical structures, dyes are resistant to fading when exposed to light, water, and various chemicals, making them 
challenging to decolorize once discharged into the aquatic environment.11-12 A multitude of organic dyes are hazardous 
and may affect aquatic life in addition to the food chain. The anionic azo dye known as tartrazine (C.I. Acid Yellow 
23, AY23) is present in a vast number of foods and pharmaceuticals. Asthma, urticaria, and angioedema have all been 
linked to the dye. 13-14

Edible oil refineries produce significant quantities of waste in the form of used bleaching earth, which represents 
a major environmental challenge due to the complexity and cost of their disposal. Although the exact quantity of used 
bleaching earth generated annually is unknown, the enormous volume of refined oil indicates a significant waste stream. 
For example, processing the growing global consumption of palm oil would require approximately 1.5 million tonnes 
of land in 20211, which is only a fraction of the total. This number highlights the potential scale of the waste problem. 
In addition, the management of this solid waste is proving increasingly difficult: using bleaching earth, considered 
hazardous waste due to its properties, is difficult and costly to dispose of, with risks of soil contamination and the air. 
The volumes produced also pose a storage and treatment problem, making the management of this waste increasingly 
problematic.

The least squares method and the linear regression approach have been used to find the model parameters and 
identify the best-fitting models respectively.15-17 Once a linear regression has been plotted, the parameters are determined 
using the slope and line intercepts. The adsorption kinetic and isotherm model that best fits the adsorption data is 
selected based on the correlation coefficient (R2).18 A major drawback of linear regression is that its error distribution 
is not fixed.19-20 Furthermore, in the case of kinetics and isotherms with more than two parameters, linear regression 
is unsuitable to ascertain the value of unknown parameters using the graphical approach.21 More recently, non-linear 
regression has been used in adsorption research in place of linear regression when developing models in conjunction 
with error analysis.17 For non-linear analysis, a variety of error analysis methods, such as residual root mean square error 
(RMSE),22 non-linear chi-square test error function (χ2),23 and coefficient of determination (R2)24 are applied to determine 
the suitably of kinetic and isotherm models.

In this work, a food-grade dye called tartrazine yellow in an aqueous solution was adsorbed onto regenerated and 
modified bleaching earth. The optimization of sorption kinetics and parameters was investigated in batch mode.
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2. Experimental methods
The clay known as bleaching earth is primarily composed of three minerals: attapulgite (a fibrous alumino-

magnesian clay typically consisting of fibres of the order of 1 to 3 microns long), stévensite-kerolite (a mineral 
composed of magnesium silicates), and bentonite (a gray-white mineral composed of montmorillonite, i.e. magnesium 
aluminum silicate and crystalline silica in a lesser proportion). Its characteristics are listed in Table 1 below.

Table 1. Characteristic of bleaching earth (BE)

Physical state Solid, powder

Color Beige

Melting point > 450 ℃; EU A 1 method

Decomposition temperature > 450 °C 

pH 5-6.5 (10% suspended solid in water)

Solubility in water < 0.9 mg/L at 20 °C, EU A 1 method

Relative density 2.6 g/cm3 at 20 °C

Average particle diameter 20-40 µm

In its pure state, tartrazine is a yellow powder with a golden hue that dissolves in water when exposed to sunshine. 
Despite being restricted by several standardizing authorities, it is widely utilized in many industries, most notably the 
food, cosmetics, and 3D printing industries. Its characteristics are listed in Table 2.

Table 2. Characteristics of E102 dye, tartrazine yellow25

Nomenclature Tartrazine yellow

Chemical formula C16H9N4Na3O9S2

structure

NaOOC

NaO3S

N
N

N

N

OH

SO3Na

solubility 200 g/L at 25 °C

Molecular weight 543.36 g/mol

IUPAC Name Trisodium; 5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)diazenyl]-4-Hpyrazole-3-carboxylate

2.1 Preparation of regenerated bleaching earth (RBE)

The bleaching earth (BE@oil) used in this work comes from a palm kernel oil refining factory located in the city 
of Douala, Wouri department, Littoral region of Cameroon and it was subjected to physicochemical treatment to yield 
regenerated bleaching earth. The SOXHLET device was initially set up, and BE@oil was used as the primary reagent 
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and hexane as the solvent in a de-oiling procedure for the  material. Next, a BE@oil-H2SO4 mixture was made and was 
agitated for 4 hours at 150 rpm. The sulfuric acid solution of concentration 1 M made up 20% of the combination. After 
stirring, the solid residue was thoroughly washed with distilled water to get rid of any remaining acid, and it was then 
dried for 24 hours at 105 °C. A portion of this material was calcined for three hours at 550 °C, yielding a product known 
as RBE. 

In order to modify the material with urea, 200 mL of distilled water was put into a 500 mL Erlenmeyer flask along 
with 20 g of BE and 20 g of urea. The mixture was agitated at 200 rpm for 24 h, filtered and the residue dried for 12 h at 
105 °C, before calcining at 550 °C to produce RBE@N. The various materials so obtained are crushed, sieved through 
sieves with a diameter of 100 µm, and then kept in a desiccator for further use. A simple description of bleaching oil 
regeneration is shown in Figure 1.

Spent Bleaching
Earth

Soxhlet extraction

Agitation

Calcination

Hexane Hexane- Oil

WBE

Sulfuric
Acid / or

Urea

Liquid-liquid
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Figure 1. Oil recovery and regeneration of used bleaching earth processes

2.2 Materials analysis techniques
2.2.1 Determination of acidity of materials

For each material (BE, RBE, and RBE@N), 1.25 g of it was put into 25 mL of distilled water. The mixture was 
agitated for 30 minutes and filtered. The filtrate was titrated against 0.1 N NaOH solution using the following formula. 

(HCl) % Acidity = 0.78xNxVNaOH 

where N is normality the titrant solution and VNaOH is the burette reading.

2.2.2 pH at the point of zero charge (pHPZC) determination

The pH at which the adsorbent’s surface is free of both positive and negative charges is known as the pHPZC. Both 
the pH of the solution and the pHPZC of the adsorbent’s surface play a significant role in the solute’s ability to bind to a 
solid surface. 0.1 g of each material was added to a series of flasks containing 50 mL of 0.01 M NaCl solution with pH 
values ranging from 2 to 12, and the mixture was agitated for 48 hours. The pH filtrates were measured after filtering. 
The point at which the line graph of ΔpH = f (pHintitial) intersects with the adsorbent is its pHPZC.

2.2.3 XRD, FTIR, SEM-EDX mapping analysis

Undoubtedly, the solid’s heat treatment caused changes to the material’s structure. Several methods, such 
as scanning electron microscopy coupled to Energy dispersive X-ray spectroscopy, Fourier transform infrared 
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spectrophotometry (FTIR), and X-ray diffraction (XRD) have been utilized to study the properties of the prepared 
materials. A Genesis FTIRTM spectrometer (Bruker Optik GmbH, Rudolf-Plank-Str. 27, 76275 Ettlingen, Germany) 
(ATI Mattson) fitted with a DTGS (Deuterated Tri Glycine Sulfate) detector in the transmission mode from 200 to 4,000 
cm-1 after 20 scans was used to record Fourier-transform infrared (FTIR) spectra. 

Ex-situ XRD data was obtained using a DECTRIS® MYTHEN 1K detector (DECTRIS, Baden-Daettwil, 
Switzerland) in transmission geometry with Cu Kα1 radiation (λ = 1.54056 Å; Gemonochromator; flat samples) on 
an STOE Stadi-p powder X-ray diffractometer (STOE & Cie GmbH, Darmstadt, Germany). Using a Magellan 400 L 
scanning electron microscope, field-emission scanning electron microscopy combined with energy-dispersive X-ray 
microanalysis (FE-SEM/EDX) was used to study the surface morphological features and elemental compositions of the 
materials.

2.3 Sorption experiments

Tartrazine yellow was used without any additional purification. To make a stock solution, the necessary quantity of 
tartrazine was dissolved in distilled water to yield a 1,000 mg/L concentration. A SECOMAM visible spectrophotometer 
was used to measure the absorbance at λmax = 428 nm in order to generate a calibration curve. Multiple standard 
solutions were created from the stock solution in the concentration range of 20 to 100 mg/L. Using decimolar nitric acid 
and sodium hydroxide, the pH of the solutions were adjusted during the tests. In 100 mL conical flasks, batch adsorption 
was performed by combining 15 mL of an aqueous dye solution with a preweighed quantity of the adsorbent. Conical 
flasks were placed on a magnetic stirrer and stirred at a steady speed of 150 rpm for a predetermined time. Operational 
parameters, including pH, agitation time, and adsorbent dosage, were varied for optimization purposes. At the end of 
each adsorption process, the mixture was filtered, and a spectrophotometer (SECOMAM, model S 500) was used to 
measure the filtrate's residual concentration. Equation 1 was used to compute the amount of dye adsorbed (mg/g) while 
the dye removal efficiency (%ads) was ascertained using the formulae in Equation (2) below, 

( )

( )
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% 100/

e i f

ads i f i

Q C C V m

C C C

= −

= − ×
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(2)

Where Qe is the amount of dye adsorbed from the solution, V is the volume of the adsorbate, Ci is the initial 
concentration of tartrazine yellow, Cf is the concentration after adsorption, and m is the mass in grams of the adsorbent.

2.3.1 Effect of initial pH of dye solution

In the pH range of 3.0 to 11.0, 100 mg of the adsorbent was agitated in a 15 mL aqueous solution containing 50 
mg/L of tartrazine to ascertain the influence of pH. HNO3 or NaOH was used in order to adjust the pH. The solution was 
quickly filtered after an hour, and a spectrophotometer was used to measure the residual concentration. Using equation 
(1), the amount of tartrazine adsorbed (Qe) was determined.

2.3.2 Effect of contact time

By agitating 100 mg of ground adsorbent in a 15 mL solution of tartrazine with an initial concentration of 50 mg/L 
at varying time intervals, the impact of agitation time on the adsorption process was assessed. After each respective time 
of contact, the spectrophotometer was used to measure the residual concentration after the solution had been quickly 
filtered. Using equation (2), the percentage elimination (%ads) of tartrazine was determined.

2.3.3 Effect of adsorbent dosage

In this series of tests, a 15 mL solution of tartrazine with an initial concentration of 50 mg/L was used to agitate a 
range of adsorbent masses, from 25 to 175 mg. 
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2.4 Adsorption kinetics

Several kinetics models were tested to determine the best fitting model for the adsorption of tartrazine onto the 
biosorbents.

The pseudo-first order equation is generally expressed as in equation 326 

( )11 expt eQ Q K t= − −   (3)

With K1: adsorption rate constant (g/mg·min); Qe: quantity adsorbed at equilibrium (mg/g) and Qt: quantity 
adsorbed at time t (mg/g).

The pseudo-second order chemisorption kinetic equation is given by equation 427 

2
2

21
e

t
e

Q K t
Q

Q K t
=

+
(4)

With K2: pseudo-second order adsorption rate constant (g/mg·min); Qe: quantity adsorbed at equilibrium (mg/g) 
and Qt: quantity adsorbed at time t (mg/g).

The Elovich equation is generally expressed by equation 528

(5)( )tqtdq
e

dt
βα −=

To simplify the Elovich equation, Chien and Clayton in 1980 assumed that αβt >> 1 and applying the initial 
conditions Qt = 0 to t = 0 the equation 5 becomes:

(6)
ln( ) ln

t
tQ αβ

β β
= +

With α: the initial adsorption rate (g/mg·min); β: desorption rate constant(g/mg·min) and Qt: amount 
adsorbed at time t (mg/g).

The intraparticle diffusion model is expressed as in equation 729 

(7)1/2
t idQ K t C= +

With Kid: Weber intraparticle diffusion rate constant in (mg/g·min1/2); Qt: amount adsorbed at time t (mg/g); 
C: value of the thickness of the boundary layer.

2.5 Error functions

In this study, the curve was fitted using non-linear regression and the Microsoft Excel Solver feature from Excel 
2019. The coefficient of determination (R2), residual root mean square error (RMSE), and Chi-square test (χ2) were used 
to evaluate which model best fits the experimental data. According to15,30-31 the error function expressions are as follows. 
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Where Qe,exp and Qe,cal (mg/g) are the equilibrium capacity of adsorption obtained experiment ally and by 
calculations from the models, respectively and N is the number of data points.

3. Results and discussion
3.1 Characterization of materials
3.1.1 Determination of pH and pH at the point of zero charge of materials

The pH value at which there is no net charge on the surface of the adsorbents is known as the pHPZC or pH at the 
point of zero charges. In adsorption phenomena, this value is crucial, particularly when electrostatic forces play a role 
in the mechanisms. By plotting ∆pH (pHfinal − pHinitial) against pHinitial, we were able to calculate the pH of zero charge 
(pHPZC). The outcomes are displayed in Figure 2.
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Figure 2. pH at the point of zero charges of the materials

The isoelectric and pH point values of different materials are shown in Table 3.
The uptake of H+ ions added to the solution by the surfaces of the solids can be used to explain the first portion of 

the three curves in Figure 2, where the pHfinal − pHinitial > 0. This curve shows that the final pH of the solution increases 
with an increase in the initial pH. In the second section, where pHfinal − pHinitial = 0, all H+ ions added to the solution 
are actually absorbed by the solid’s surface until the sites are saturated, at which point the solution’s pHfinal rises. This 
section relates to the OH− ion surface saturation, at which point all of the added OH− ions stay in solution.32 The results 
presented in Table 3 suggest that the bentonite treatment did not significantly alter the adsorbent’s acidity, hence 
facilitating improved dye adsorption in the medium. Negative charges accumulate on the surfaces of the adsorbents for 
solution pH below pHPZC. Tatrazine yellow is thus favourable for adsorption onto these materials due to a notably strong 
electrostatic affinity between the OH-ions on the adsorbents’ surface and the dye’s form. The adsorbents’ positively 
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charged surfaces, on the other hand, are more likely to reject the dye’s cations at pH values higher than pHPZC.

Table 3. pH and pHPZC of different materials

Materials BE RBE RBE@N

pHPzc 7.33 7.21 7.00

pH 6.04 6.02 6.05 

3.1.2 Fourier-transform infrared spectroscopy 

Figure 3 shows the infrared spectra of the different materials. All materials exhibit a strong band centered at 1,001 
cm-1 and ranging from 1,200 cm-1 to 900 cm-1, which is consistent with the Si-O (Quartz) bond’s valence vibrations, 
according to spectroscopic investigation.33 Stretching vibrations of Si-O-Al bonds (Kaolinite) and hydroxy groups 
perpendicular to the surface (translational OH) are responsible for the bands between 795 cm-1 and 748 cm-1.34-35 The 
illite’s vibrations may be the cause of a band that is present between 690 and 750 cm-1.36 Nevertheless, other peaks that 
indicate the existence of additional substances were detected in the spectrum of waste-bleaching earth (BE@oil) alone. 
These peaks are as follows: The elongation of nitro compounds (N-O group) is represented by the existence of a band at 
1,500 cm-1. The band, which stretches between 1,700 cm-1 and 1,600 cm-1, is caused by the valence vibrations of the OH 
group of the water adsorbed between the layers. The presence of organic molecules confirms that the bands between 3,000 
and 2,840 cm-1 are typical of the C-H elongation of alkanes.
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Figure 3. FTIR of different materials (a) BE, (b) BE@oil, (c) RBE and (d) RBE@N

3.1.3 Scanning electron microscopy 

The images of the surface morphologies of the materials obtained from SEM analysis are presented in Figure 4.
The tetrahedral (T) and octahedral (O) layers of oxygen atoms stack to form a layered structure of this clay, as 

observed under a scanning electron microscope of the BE. It was also observed that in contrast to other clays, such as 
BE@oil that has been washed with sulfuric acid and BE@oil, which has been used to decolorize vegetable oils while 
also taking modifying agents into account, the color of BE is white.37 The BE@oil image demonstrates how the clay 
that resulted from the discoloration phenomena is now dark or perhaps black in appearance rather than white. This can 
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be the result of contaminants removed from crude palm oil during the refining process. The original structure is still 
visible in this micrograph, but it appears to have less developed porosity than the BE. It’s possible that this is because 
of substances that were left behind after it was used to decolorize crude palm oil and that washing was unable to 
remove these substances. It can also be seen that the clay-like morphology appears to be different for RBE compared 
to raw-bleaching earth. It appears to have higher porosity than any other material while retaining the white hue that 
is specific to its clay. Regarding RBE@N, it has a layered structure that differs from the raw bleaching earth-based 
clay. The modification of the bleaching earth with urea might have had an impact on how the oxygen tetrahedral (T) 
and octahedral (O) layers are stacked, which would have allowed for an increase in pores on the material’s surface. Its 
original clay’s unique white tint, however, is still present and unaltered.

(a) (b)

(c) (d)

100 μm 100 μm

100 μm 100 μm

Figure 4. SEM image of (a) BE, (b) BE@oil, (c) RBE et (d) RBE@N

3.1.4 Energy dispersive X-ray spectroscopy (EDX)

This technique was used to determine the elemental composition of the various materials used in this study. The 
outcomes of the SEM-EDX analysis are shown in the Figure 5.

The chemical composition of the raw BE material (Figure 5a) was determined qualitatively by EDX microanalysis 
to yield percentages of oxygen (O), magnesium (Mg), aluminum (Al), and silicon (Si) that are, respectively, 47.8%, 
18.8%, 1.4%, and 32%. After refinement, EDX analysis shows the presence of two more elements: carbon and 
phosphorus. On the one hand, there is a decrease in the percentage composition of some elements (silicon, magnesium, 
and oxygen), which is followed by an increase in the mass percentage of Al. Raw bleaching earth conserved these 
chemical components, which could be a result of the presence of oil contaminants (Figure 5b).

The results obtained (Figure 5c) show that the elemental makeup of the RBE is the same as that of the BE; 
nevertheless, we observe that the element Na is present. The montmorillonite compound ((Al1.67Mg0.33)Si4O10(OH)2Na0.33) 
is characterized by the presence of the element Na. In contrast to the original modified clay, the RBE@N exhibits the 
presence of urea-specific atoms such as carbon and nitrogen (Figure 5d). The increase in Si content in the regenerated 
bleaching earth (RBE) is due to the combination of selective removal of non-siliceous impurities and decomposition of 
aluminosilicates during the regeneration process.2
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Figure 5. EDX elemental compositions of (a) BE, (b) BE@oil, (c) RBE and (d) RBE@N

3.1.5 X-ray diffraction (XRD)

Using X-ray diffraction analysis, we were able to identify the mineralogical phases that make up the mineral 
powders under investigation. 
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Figure 6 shows the X-ray diffractograms of RBE, RBE@N, BE and BE@oil materials. The results reveal that the 
spectra do not significantly differ from one another. The primary crystallographic structure of the clay is unaffected 
by the adsorption of colours (such β carotene, chlorophyll, etc.) from the treated oils or the various bleaching earth 
treatment processes. The bentonite’s diffractogram reveals that silica (SiO2) predominates in quartz crystals, as 
evidenced by a Montmorillonite and quartz. The diffractogram as a whole is defined as follows: 

-20.89°, 20.73; 37.5°, and 50.78°, which characterize quartz (Q);
-19.94°, 35.8°, and 61.7°, which characterize montmorillonite (M).38

According to Komadel et al.39, the diffractograms for the clays BE, BE@oil, RBE, and RBE@N indicate that the 
first peak at 2θ = 19.4°, which corresponds to montmorillonite in the BE, is attenuated in the RBE. This suggests that 
during the acid treatment, the protons from the acid replace the interfoliar cations, leading to the dissolution of the 
octahedral cations (Al3+, Mg2+, Fe2+, and Fe3+). Additionally, Fermandes et al.40 showed that contaminants are reduced 
by acid treatment. This result leads us to the conclusion that the bleaching earth’s original structure remains unchanged 
following the chemical treatment of the regenerated material.

-Quartz’s second peak, 2θ = 20.73°, is visible on all materials but is more prominent on the RBE. As a result, we 
would anticipate that RBE’s adsorbent power would be higher than BE’s because silica is a substance whose specific 
surface area increases with temperature.41

-The BE spectrum is the only one with the third peak, 2θ = 38°, representing quartz; the other spectra do not have 
it. We may comprehend that there would have been more movement or a chemical reaction between the components of 
quartz and the contaminants in the raw palm oil when this clay was used in the decolorization of oil (BE@oil).

3.2 Adsorption studies

The mass of the adsorbent material, the pH of the pollutant solution, and the contact time were all varied to 
emphasize the impact of key parameters that are likely to affect the adsorption process. These parameters are related 
to the adsorbate’s nature (size, polarity, solubility, presence of functional groups) as well as the adsorbent’s physical 
characteristics (porous structure, type of surface functional groups).

3.2.1 Influence du pH

Different solutions of the dye (50 mg/L), adjusted separately to pH values between values 3 and 11 were brought 
into contact with the adsorbent at a dosage of 50 mg, to study the effect of pH on the adsorption of the dye on the two 
clay materials. Figure 7 presents the results obtained.
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The best elimination rates for the pollutant E102 are often achieved at an acidic pH (pH 3), as shown in Figure 7. 
These rates are 48% for RBE, 45% for RBE@N, and 44% for BE. The adsorption of the dye onto the various materials 
decreased by half for the modified materials and by five times for BE (4% for RBE, 22% RBE@N, and 8% BE) when 
the pH rose above 5.

The degree of dissociation of various compounds in solution at various pH values and the surface charge of the 
adsorbents can both be used to explain these tendencies.42

 This is because as the pH of the adsorbate increases, the positively charged sites on the adsorbent get decreased (with 
a consequent increase in negative charges on the adsorbent) thereby causing less attraction of the anionic dyes for the 
surface of the adsorbent. This condition leads to electrostatic repulsion because it does not support the uptake of anionic 
dyes from the system.43 A decrease in sorption of dyes is observed at high pH, this is because hydroxide (OH-) ions compete 
effectively for the active site on the adsorbent with the anionic dye. The enhanced electrostatic force of attraction 
exists between the the three adsorbent and anionic dyes at pH < 4 thereby increasing the removal of the dyes. At lower 
adsorbate pH, the adsorbent surface gets protonated, resulting in increased dye adsorption due to electrostatic attraction. 
A similar result was recorded in the sorption of tartrazine onto sawdust biosorbent.44

3.2.2 Influence of contact time

Determining the point at which equilibrium is reached requires an understanding of how contact time affects dye 
uptake into any substance. Figure 8 illustrates the influence of contact time on the uptake of tartrazine onto BE, RBE, 
and RBE@N. It is evident that there was no discernible increase in the sorption rate following the initial rapid rate of 
dye fixation from the solution, which was followed by a gradual decrease until equilibrium was reached. 

The initial phases of the adsorption process are attributed to the many vacant surface-active sites on the adsorbent, 
which saturate with time, indicating the achievement of adsorption equilibrium.45 It was noted that all three adsorbents 
had the same equilibrium periods (140 min). For BE, RBE, and RBE@N, equilibrium adsorption capacities for the 
tartrazine molecules are 1.40, 2.43, and 2.30 mg/g at 140 minutes, respectively. 
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Figure 8. Influence of contact time on the adsorption of E102

3.2.3 Influence of the mass of the adsorbent

As an essential factor in adsorption research, the adsorbent dose establishes the adsorbent’s capability for a specific 
starting dye concentration. Figure 9 illustrates how dosage affects tartrazine’s ability to bind to BE, RBE, and RBE@N. 
With an increase in material dose, the dye’s ability to be absorbed by BE, RBE, and RBE@N is reduced. The adsorption 
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capacity of tartrazine decreased from 2.66 to 0.16 mg/g, 6.27 to 0.97 mg/g, and 3.60 to 0.29 mg/g for BE, RBE, and 
RBE@N, respectively when the adsorbent dosage was increased from 25 to 175 mg. 

The decrease in the adsorption capacities of BE, RBE, and RBE@N is due to aggregation/overlapping of the 
active adsorption sites at higher doses of the materials.46 Consequently, more dye loading is achieved at lower adsorbent 
dosages due to more effective utilization of the active sites of BE, RBE, and RBE@N. Remember that the concentration 
of tartrazine does not change with an increase in the material dosage. This encourages less loading on the material’s 
specifically active sites, which reduces site usage.47

To guarantee the best possible use of the adsorption sites, we chose 50 mg of each adsorbent for the adsorption 
investigation. Other researchers have also observed a similar pattern in the removal of dyes48,49 and heavy metals50,51 
from contaminated water.
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Figure 9. Influence of material doasage on E102 adsorption

3.3 Kinetic analysis

For the purpose of describing the adsorption process mechanism and rate, kinetics offers useful information. The 
mechanism of adsorption was examined in this work using pseudo-first-order, pseudo-second-order, Elovich, and 
intraparticle diffusion models. Table 4 presents the kinetic rate constants, while Figure 10 shows the non-linear kinetic 
plots. 

All three of the adsorbents have coefficients of determination (R2) more than 0.95 for the pseudo-first-order, 
pseudo-second-order, and Elovich models. The computed values of Qe(cal) for the pseudo-first and pseudo-second-order 
models of tartrazine dye showed almost the same values as the experimental value of equilibrium sorption capacity, 
Qe(exp). The results of the Chi-square test (χ2) indicated that the Elovich, pseudo-first-order, and pseudo-second-order 
models fit the experimental data the best. According to the results of the pseudo-second-order and Elovich models,51 
this good fit suggests that both internal and external mass transfer mechanisms were important factors in the uptake of 
tartrazine dye on BE, RBE, and RBE@N. The results of the pseudo first-order model, indicate a physisorption process 
for the dye uptake, from which we can conclude that there is strong evidence that physisorption and chemisorption 
participate in the adsorption process of tartrazine on these three adsorbent materials.

The intraparticle diffusion model assumes that the dye molecules diffuse inward into the porous adsorbent. 
The values of the R2 recorded for the uptake of the dye onto BE, RBE and RBE@N were low (0.732 < R2 < 0.877), 
indicating that the intraparticle diffusion is not the dominant mechanism for the removal of the dye molecules by 
adsorption onto BE, RBE and RBE@N. Besides, the intraparticle diffusion model had intercept values indicating the 
involvement of the surface sorption process.52
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Figure 10. Non-linear forms of kinetic models for (a) BE, (b) RBE and (c) RBE@N



Sustainable Chemical Engineering 464 | Donald Raoul Tchuifon Tchuifon, et al.

Table 4. Optimum kinetics parameters and their statistical comparison values onto BE, RBE and RBE@N

N° Models Constants Values R2 χ2 RMSE

BE

1. Pseudo first-order 
Qe (mg/g) 1.359 0.952

 

0.132 0.304

K1 (1/min) 0.090

2. Pseudo second order 
Qe (mg/g) 1.462

0.983 0.034 0.176
K2 (g/min·mg) 0.099

3. Elovich
α (mg/g·min) 1.292

0.954 0.022 0.169
β (g/mg) 4.721

4. Intraparticular diffusion 
Kp (mg/g·min0.5) 0.092

0.732 0.601 0.618
C (mg/g) 0.413

RBE 

1. Pseudo first-order 
Qe (mg/g) 2.304

0.946 0.333 0.562
K1 (1/min) 0.068

2. Pseudo second order 
Qe (mg/g) 5.447

0.978 0.100 0.345
K2 (g/min·mg) 0.001

3. Elovich
α (mg/g·min) 1.049

0.978 0.026 0.221
β (g/mg) 2.435

4. Intraparticular diffusion 
Kp (mg/g·min0.5) 0.166

0.839 0.800 0.862
C (mg/g) 0.576

RBE@N

1. Pseudo first-order 
Qe (mg/g) 2.207

0.989 0.071 0.563
K1 (1/min) 0.066

2. Pseudo second order 
Qe (mg/g) 2.420

0.928 0.044 0.370
K2 (g/min·mg) 0.041

3. Elovich
α (mg/g·min) 0.744

0.928 0.034 0.262
β (g/mg) 2.375

4. Intraparticular diffusion 
Kp (mg/g·min0.5) 0.119

0.877 0.104 0.439
C (mg/g) 0.934

3.4 Adsorption mechanism

The adsorbate’s nature and the adsorbent’s surface characteristics are intricately linked to the adsorption 
mechanism. Introducing additional materials to an adsorbent modifies its surface characteristics and interactions, thereby 
affecting the adsorption mechanism. The most commonly identified adsorption mechanisms for clay and minerals with 
respect to organic water contaminants include chemical adsorption, electrostatic interaction, Van der Waals forces, 
hydrophobic interactions, hydrogen bonding, ion exchange, n-π interaction, surface complexation, and π-π interaction.



Sustainable Chemical EngineeringVolume 5 Issue 2|2024| 465

The dominant adsorption mode is determined by the chemical properties of the organic pollutant and the structure, 
surface characteristics, and functional groups of the clay mineral composites. Moreover, the adsorption mechanism 
is influenced by the conditions of adsorption, such as pH and ionic strength, which can alter the adsorbent’s surface 
properties.

The typical adsorption mechanism of organic contaminants onto clay/mineral composites is depicted in Figure. 
11. Three different forms of interactions may be distinguished in the case of tartrazine: dipole-dipole attractions, 
electrostatic attraction, hydrogen bonding, and Lewis acid-base interactions. According to Xiong et al.,53 the Lewis 
interaction occurs when there is a lone pair of electrons on the adsorbent that acts as a Lewis base site to interact with 
the strong Lewis-acid or the adsorbate. For example, the Lewis acid (Al3+) in clay or modified clay interacts with the 
nitrogen atom of tartrazine, which functions as a Lewis base.54

Although the figure does not depict the adsorption of organic contaminants, it offers valuable insights into the 
structure of montmorillonite, a widely utilized clay adsorbent, which is composed of octahedral and tetrahedral sheets 
connected by oxygen atoms.

The text accompanying the figure outlines various interactions that may occur between clay minerals and 
contaminants, including:

Lewis acid-base interactions: These take place between electron donors (Lewis bases) on the contaminant and 
electron acceptors (Lewis acids) on the clay surface.

Electrostatic attractions: The negative charge on clay surfaces can attract positively charged contaminants or repel 
negatively charged ones.

Hydrogen bonding: This interaction can happen between hydrogen atoms on the contaminant and oxygen atoms on 
the clay surface.

Ion exchange: This process involves swapping ions between the contaminant and the clay mineral.
By comprehending the interactions between contaminants and clay minerals, and how they are affected by the 

specific properties of each, we can more accurately predict and enhance the adsorption process to remove pollutants 
from water.
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Figure 11. Proposed of adsorption mechanism of tartrazine yellow on different materials

Lewis interactions are dependent on pH since the solution’s pH influences the sites that are accessible on the 
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adsorbent.55 The most typical adsorption process is electrostatic contact. Electrostatic attraction and repulsion are part 
of the creation of ionic bonds. It is created when atoms gain and lose electrons in the presence of anions and cations. 
Examining how the pH of the solution affects the adsorbent’s ability to adsorb is important. This is because the charges 
on the adsorbent might change depending on the pH of the solution, which affects the electrostatic interaction. Despite 
the existence of these functional groups, the electrostatic interactions through surface functional groups can occasionally 
be negligible. 

This is a result of additional interactions present in the adsorbent, which lessen the strength of the electrostatic 
interactions. For example, the adsorption of malachite green onto graphene oxide/sodium montmorillonite composite 
was not significantly affected by electrostatic interaction.56 A form of dipole-dipole attraction known as hydrogen 
bonding occurs when an electronegative atom, such as nitrogen (N), oxygen (O), or fluorine (F), bonds to a hydrogen 
(H) atom. The majority of clay/mineral composites have a great tendency to establish hydrogen bonds with organic 
pollutants.

The examination of the RBE and RBE@N materials after adsorption is depicted in Figures 12 (X-ray diffraction) 
and 12 (EXD/mapping). The X-ray diffraction patterns Figure 13 show that the adsorption did not change the initial 
material’s structure, allowing for several uses and the potential for material reuse. In reference to the EDX analysis, 
we note that the elements on the material have changed due to the presence of carbon (C) and nitrogen (N) on the RBE 
diffractogram, which are elements that could only have originated from tartrazine. Additionally, it can be observed 
that the percentage of these elements has increased on the diffractogram of RBE@N, which originally contained these 
elements.
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4. Conclusion
This study investigated the removal of tartrazine yellow dye from simulated wastewater using three adsorbents: 

bleaching earth (BE), regenerated bleaching earth (RBE), and modified bleaching earth (RBE@N). All three effectively 
removed the dye, with RBE and RBE@N showing superior performance. Lower pH and lower adsorbent dosages 
favored dye uptake. The study also suggests that various interactions, including Lewis acid-base, dipole-dipole, 
hydrogen bonding, and electrostatic attraction, contribute to dye removal. The pseudo-first and pseudo-second-
order kinetic models accurately represented the kinetics of dye uptake on BE, RBE, and RBE@N. The results of this 
study demonstrated the effectiveness of BE, RBE, and RBE@N in the decontamination of waters containing anionic 
tartrazine dye, with the latter two being particularly effective. There is also a competition between chemisorption and 
physisorption. Additionally, the analysis indicates the potential reusability of the adsorbents because they maintain their 
structure after dye adsorption. 
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