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Graphical Abstract:

Abstract: Cadmium (Cd) is not crucial for animal and plant life, and its total elimination from irrigation or drinking 
water supply will not deprive water consumers of any beneficial nutrient. Its toxicity to humans has been reiterated and 
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several mechanisms to get rid of it via numerous adsorbents over several decades ago have been researched, without 
capturing mango seed shell (MSS) adsorption data performance under 2-parameter Jovanovic and the 3-parameter Sips 
isotherm models. The present study tried to address those gaps. As such, the parameter values, qmax = 97.51 mg/g and 
KJ = -0.0202 L/mg for Jovanovic, and Ks = 20.42 L/g, βs = 1.16 and as = -0.046 L/g for Sips model, was computed and 
obtained. After a series of fine-tuning them to improve model fitting at greater convergence, it led to an R2 value of 
0.7231 and 0.9998, respectively. In addition to error functions, residuals and chi-squares evaluated, it was found that 
the Jovanovic equation couldn’t describe Cd(II) uptake by MSS, due to its larger return of statistical metrics values 
compared to Sips. Therefore, an existing Cd2+-MSS data favouring the Langmuir model as the best was re-evaluated 
-which then pinpoints Sips isotherm as the best (in this study) at a low % difference of 0.04-20.59% for predicted vs. 
observed equilibrium Cd2+ uptake (qe). The adsorption mechanism of Cd(II) unto MSS described by Sips is favorable 
and efficient adsorption, where the heterogeneous MSS surface has a high affinity for Cd2+ at low concentration. A huge 
research gap still exists, as Jovanovic and Sips isotherm models are less commonly assessed during adsorption studies. 
For sustained water purification using MSS as an adsorbent, its abundance must be taken into consideration.
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1. Introduction
Cadmium (Cd, in the form of Cd2+ or Cd(II)) can enter water sources from industrial discharges (e.g., metal 

plating, alloy production, mining, electronics production and battery manufacturing), natural sources (e.g., volcanic 
activity, forest fires and some geological formations), urban runoff, Cd(II)-containing waste dump (e.g., pesticide, 
dye, textile, plastic, refining and mining operations, etc.) and agricultural runoff, especially phosphate-based fertilizers 
containing Cd2+.1-5 It can be absorbed by different types of aquatic organisms and subsequently enter the human body 
through biomagnification.6 Exposure to heavy metals increases the risk of cancer, weakened bones, kidney damage and 
respiratory issues.7 It can be removed from aqueous solution through biosorption,8 solvent extraction, nanofiltration 
& ultrafiltration,9,10 reverse osmosis, biological reactors, electrodialysis,11 biomineralization,12 membrane separation,13 
electro-sorption,14,15 evaporation, ion exchange,16 electro-deposition,17 Fenton chemical oxidation,18 chemical 
precipitation19,20 and electrocoagulation.21-24 At the moment, Cd(II) adsorption has been carried out in batch or using 
packed columns.25 Biela et al.26 reported that 0.15-0.2 mg/kg of Cd2+ is present in the Earth’s crust and the amount 
supportive to be tolerable for consumption by WHO is 0.005 mg/L (ppm).27 Usually, to free off synthetic wastewater3, 
industrial wastewater, contaminated water, stormwater runoff, human blood plasma,28 seawater29 and other aqueous 
medium of Cd(II), sorption rates by studying their isotherm and kinetics were previously determined.30 The Jovanovic 
and Sips biosorption isotherm models are both valuable tools for characterizing the adsorption behavior of pollutants 
onto adsorbent materials, but they differ in their mathematical formulations, significance, and underlying assumptions. 
Both models assume homogeneous adsorbent surfaces, monolayer adsorption, and reversible adsorption processes.31 
However, the Sips model allows for deviations from these assumptions, making it more versatile for describing 
complex adsorption phenomena;32 whereas Jovanovic refuses to allow mechanical contact between the adsorbent and 
the adsorbate.33-35 Because, at high adsorbate concentration and pressure, Sips isotherm predicts Langmuir and at low 
concentration and pressure, it reduces to Freundlich, as described by N’diaye & Kankou,36 Gautam et al.37 and Chilev et 
al.38 Considerable amount of Cd(II) by-product removed via sorption can be re-channeled into several applications.

Biosorption is a prominent technique in environmental engineering that is employed in the removal of Cd(II) 
from different contaminated water sources. Favored by its effectiveness and minimal cost,39-42 several materials 
called adsorbent/biosorbent have been employed to sorb Cd2+. Namely, thermophilic and acidophilic algae Galdieria 
sulphuraria,43 Anabaena sphaerica,44 marine algae,45 Hizikia fusiformis,46 Salicornia europaea,47 wheat straw/bran,25,48 
natural phosphate,49 chicken bones,50 potato peels,51 Tridax procumbens,52,53 fly ash,54-56 natural clay,57-64 nanomaterials/
nanosorbents,60,65-69 spent coffee grounds,70 zeolite,71-73 water hyacinth,74-76 Escherichia coli,77 Cupriavidus necator,78 
archaeal cells,79 Sargassum fluitans,80 chabazite,81 NTA-silica gel,82 Saccharomyces cerevisiae & Leuconostoc 
mesenteroides,83,84 immobilized hydrophobic ionic liquids on nano-silica,85 melon seed husk,86 banana peels,87 
aluminum hydroxide on cation exchange resin,88 hydroxyapatite,89,90 waste shells of golden apple snail,91 chitosan,92-97 
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Allium cepa,28 steel slag,98 olive mill solid residue,99 smart dry sludge,100,101 calcite,102 modified limestone,103 silkworm 
excrement biochar,104 eggshell,105 metal organic framework,106,107 gas,108 decaying leaves,109 sidr leaves,110 cattail leaves,111 
montmorillonite,112 activated carbon,113,114 polyethylenimine-grafted gelatin sponge,115 weathered sand of basalt,116 
pistachio hull waste,117 pumpkin seed, soybean powder,118 dragon fruit peel, passion fruit peel, rambutan peel,119 
Samanea saman,120 Delonix regia,121 Syzygium cumini seeds extract,122 Eucalyptus globulus,123 carp scales,124 Annona 
squamosa shell,125 agricultural residues bark,126 Albizia samanpod,127 lignocellulose,128 bamboo charcoal,129 sunflower 
waste,130 green coconut waste, lemon peel,131,132 corn residue,133-135 cocoa pod waste,136 biochar,137,138 walnut,139 avocado 
seed,3 orange waste,140 palm kernel shell,141 yam,142 onion skin,143 and rice residues.144,145

Numerous studies employed mango seed shells (MSS) to adsorb diverse contaminants. The adsorption 
performance of Cd2+ detoxification utilizing many agricultural wastes was previously investigated.146,147 Many other 
adsorbents notably used to remove Cd(II) were not reported in this study. Apart from Cd(II), MSS or associated waste 
parts acted as adsorbent in the removal of Fe,148 Pb,149-151 Cr,152-154 Cu,149,155-157 Zn,149 Ni,149 dye158,159 and oil.160,161 So far, 
the removal of Cd2+ using mango waste or derivatives were carried out by Parekh et al.,162 Njuguna163 and Zhang et 
al.164 In those studies, none of the researchers analyze the performance of the MSS adsorbent using Jovanovic or Sips 
biosorption isotherm models for the removal of Cd2+. Thus, Chu et al.165 deeply studied the Jovanovic isotherm and pin 
point previously reported bogus versions. Conflicting versions of the Sips isotherm model is also employed by many 
researchers. Using appropriate Jovanovic and Sips isotherm models, this study focuses on removing Cd(II) from aqueous 
solution using MSS. The severity of Cd2+ pollutant given its higher solubility in water compared to other toxic metals,166 
necessitates its removal. Additionally, the study comprises of utilizing an existing Cd2+-MSS sorption experimental data 
to estimate the parameters in Sips and Jovanovic models by nonlinear regression and compare with literature findings. 
Carrying out error analysis for observed and predicted data is significant for accuracy assessment, model improvement, 
decision making, uncertainty quantification, quality control, research validity and performance evaluation. As such, this 
study computes seven error functions for the predictions from both models to gauge the usefulness of the observed and 
predicted data. The findings will aid in optimizing the MSS sorbent and designing an effective Cd(II) sorption process, 
and open up avenues for further studies exploring the sorption capabilities of MSS for other heavy metals. Doing so, the 
study promotes sustainable practices, cost-effective and efficient water treatment, and an ecofriendly approach for waste 
utilization and environmental remediation.

2. Methodology
2.1 Experimental adsorption procedure

The current empirical study utilized fresh MSS endocarp, deionized water, distilled water, and cadmium sulphate 
stock solution. Equipment such as an oven, mortar and pestle, orbital shaker, atomic absorption spectrophotometer 
(AAS), and plastic bottles were employed. Fresh mango seeds were sourced from local fruit sellers near Modibbo 
Adama University (MAU), Yola, Nigeria. The seed shells were removed, washed with distilled and deionized water, 
and dried in an oven at 70 °C for 48-72 h until a constant weight was achieved. The dried biomaterial was ground and 
stored in airtight plastic bottles for use as a biosorbent. Stock solutions of Cd(II) were prepared using cadmium sulphate 
heptahydrate (CdSO4·7H2O) and diluted with distilled water to various concentrations, resulting in a pH of 4.5. Time-
dependent biosorption studies were conducted with intervals of 10, 30, 60, and 120 min, using a metal concentration 
of 5 mg/L, an orbital shaker speed of 200 rpm, and a temperature of 32 °C. Dose-dependent and metal concentration-
dependent biosorption studies were also performed, varying biosorbent doses and metal concentrations while 
maintaining optimal conditions. Cd ion concentrations were determined using AAS, and all experiments were performed 
in quadruplicate.

Fourier Transform Infrared (FTIR) analysis was also carried out before and after sorption of the Cd2+ by MSS at 
10 min contact time, to identify and confirm the functional groups present on the surface of the adsorbent material. It 
is believed that FTIR conducted at shorter contact times may show fewer interactions, with less noticeable spectral 
changes. Because, prolonged contact time may lead to more thorough adsorption, potentially saturating functional 
groups on the adsorbent surface. For a meaningful comparison, FTIR was performed at a consistent, representative 
condition (e.g., the optimal condition identified in the isotherm study: 4.5 pH, 10 min, 5 mg/L & 0.5 g dose) to provide a 
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clearer view of the functional groups involved in the adsorption process.

2.2 Jovanovic and Sips parameter determination

Existing experimental mango seed shell adsorption data of Cd(II) sorption from a previous article issued by Luka 
et al.167 or the current study author, was used, in continuation of harnessing the suitability of several isotherm models 
in describing the adsorption behavior. A numerical study by the author establishes the Langmuir model as the most 
fitting model for the mango seed shell adsorption process. Hence, the Jovanovic and Sips isotherm equations described 
by Equations 1-2168,169 and 3-4,65,170,171 respectively, were used to determine their parameters, in furtherance of finding 
models that appropriately describe the Cd(II) sorption mechanism by the adsorbent.
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Where, qe = amount of adsorbate in the adsorbent at equilibrium (mg/g), qmax = maximum uptake of adsorbate 
obtained from the plot of lnqe versus Ce, KJ = Jovanovic constant (L/mg), Ks = Sips isotherm model constant (Lg-1), βs 
= Sips isotherm exponent/index describing the homogeneity or heterogeneity of the biosorption process and as = Sips 
model constant (Lg-1). The parameters defined were determined using Origin Pro 2018 via nonlinear regression analysis. 
In addition, the % difference between the observed and calculated qe of Cd2+ sorption by MSS, was determined using 
Equation 5.
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At this point, the predicted responses were determined by substituting the estimated isotherm parameters into their 
respective models using Ce.

2.3 Error analysis

Error functions listed in IIaboya and Okpoko,172 Bajic et al.,124 Nworie et al.,173 Sampranpiboon et al.,174 Abdel 
Hafez et al.,175 as tabulated in Table 1 (Equation 6-12), were evaluated for the two models qe data.
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Table 1. (cont.)

Error function Mathematical expression Equation no.
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Where, N = total number of data points, p = number of parameters in the model being evaluated, SSE = Sum of 
squared error, ARE = Average relative error, RMSE = Root mean square error, HYBRID = Hybrid fractional error 
function, MPSD = Marquardt’s percent standard deviation, NSD = Normalized standard deviation and SEE = Standard 
error of estimate.

2.4 Analysis of previous findings

In tabular form, previous findings as regards the obtained result in this isotherm study, were investigated and 
compared.

3. Results and discussion
3.1 Predicted Cd(II) uptake

Except at Ce = 70.92 mg/L where Jovanovic % difference is low (5.35%), lower qe of Cd2+ estimated using the 
model are very high. Unlike % differences in Jovanovic, Sips isotherm actual and predicted qe differences, returns very 
low differences, with approximately 21% as the highest. High % difference infer poor correlation or fit between the 
empirical and estimated qe, as shown in Table 2 for Jovanovic.

While it is expected that the low % differences observed in Sips’ model prediction is consistent with a better fit. 
Estimated parameters from Sips isotherm is more likely to describe the sorption of Cd2+ using MSS than Jovanovic 
model.
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Table 2. Cd2+ Observed and calculated adsorption capacities from sips and Jovanovic models

Jovanovic Sips

Experiment Predicted Predicted

Ce (mg/L) qe (mg/g) qe (mg/g) % Difference qe (mg/g) % Difference

1.12 18.35 99.74087 443.547 22.12898 20.59388

1.88 41.48695 101.2808 144.127 38.7236 6.660775

27.25 302.509 168.9084 44.16418 302.7635 0.084121

70.92 386.6797 407.3788 5.353056 386.5141 0.042821

3.2 FTIR analysis before and after adsorption

O-H stretching vibrations typically observed around 3,200-3,500 cm-1 are broad peaks indicative of hydroxyl 
groups’ presence. These groups are known for their strong interaction with metal ions, including Cd2+, which suggests 
potential sites for sorption. Also, in Figure 1a, there is the C=O stretching in carboxyl groups. It is a peak around 1,700-
1,750 cm-1 associated with the carbonyl (C=O) group in carboxylic acids. The presence of this peak suggests that 
carboxyl groups may play a significant role in binding Cd2+.176 Figure 1(a) additionally contains C-O stretching found 
in the region of 1,000-1,300 cm-1. It corresponds to the stretching vibrations of C-O bonds in alcohols, esters, or ethers, 
which can also contribute to metal ion sorption. There is also a peak usually present in MSS but missing in Figure 1(a). 
If C-H stretching in alkanes (typically around 2,850-2,950 cm-1) is missing in the FTIR spectrum, it could indicate 
structural changes in the MSS after preparation or modification for Cd(II) adsorption, possibly due to the removal of 
certain organic components. This is in spite of not initiating the sorption experiment yet, which is shown in Figure 1(b).

In comparison, there is a shift in O-H stretching peak before sorption (Figure 1(a)). The broad O-H peak, typically 
around 3,200-3,500 cm-1, might shift slightly to a lower wavenumber after Cd2+ sorption. A shift occurring after sorption 
(Figure 1(b)) indicates interaction between the hydroxyl groups and Cd2+ and suggests the formation of a bond between 
Cd2+ and the O-H groups. Due to the introduction of Cd2+, it might lead to new peaks or an intensification of existing 
peaks in regions associated with metal-oxygen bonds, typically around 500-700 cm-1. These peaks are indicative of 
Cd(II) binding to the functional groups on the MSS surface. Specifically, intensification of C=O stretching around 
1,700-1,750 cm-1 might become more pronounced or shift, indicating stronger interaction with the metal ions. The new 
or shifted peaks, particularly those related to the O-H or C=O stretching, are crucial as they demonstrate the binding of 
Cd(II) ions to specific functional groups on the MSS. The presence and intensification of these peaks provide evidence 
that the adsorption process is successful and that these functional groups are actively participating in the sorption 
mechanism. Introducing more functional groups such as carboxyl (-COOH), hydroxyl (-OH), or amine (-NH2) groups 
via chemical treatments (e.g., acid or base modification) can enhance the adsorption capacity by providing more binding 
sites for Cd2+.

3.3 Correlation

As expected, the graphical correlation of the data in Table 2, as shown in Figure 2, that Sips is above Jovanovic’s 
isotherm model in describing the MSS performance. The calculated qe fits the experimental values in Sips but failed 
in Jovanovic, based on qe vs. Ce plot conducted. This poor fit could be due to the oversimplification of the adsorption 
process, where the assumption of a uniform surface and monolayer adsorption does not hold true for MSS, especially in 
the presence of Cd2+ which may interact with a variety of functional groups on the MSS surface.
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Figure 1. MSS FTIR (a) Pre-sorption and (b) Post-sorption of Cd2+

A qe vs. Ce plot in Figure 2(a & b) is expected to result in a curve rise to a peak or equilibrium point. Figure 
2(b) shows a much better alignment of the data points along the empirical line, reflecting a closer match between 
the predicted and experimental qe values. Sips isotherm’s ability to account for surface heterogeneity and variable 
adsorption energies likely makes it a better model for describing the adsorption of Cd2+ on MSS. Binding energies 
for Cd2+ on MSS might not be uniform, as the Jovanovic isotherm assumes. The Sips model accommodates this by 
combining the Langmuir (uniform binding energy assumption) with Freundlich (which accounts for varying affinities) 
isotherms, leading to a more accurate prediction of qe across different concentrations. At higher Cd2+ concentrations, 
the assumption of no interaction between adsorbed molecules (central to the Jovanovic model) becomes less valid. 
However, the Sips isotherm better captures these interactions, especially at higher loadings, leading to a more accurate 
fit.
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Figure 2. Actual vs. predicted equilibrium Cd(II) uptake by MSS from (a) Jovanovic isotherm and (b) Sips model

3.4 Isotherm parameter interpretation

Parameters, qmax and KJ, determined after the nonlinear regression using the Jovanovic model and Ks, βs and as 
from Sips model, are displayed in Table 3. Magnitude and sign of KJ depends on factors such as the properties of the 
adsorbent and adsorbate, solution chemistry, temperature, and the presence of competing species. In the Jovanovic plot 
of Figure 2(a), qe continues to increase as the Ce increases without reaching a flat peak as does the experimental data. 
It suggests that the adsorption process does not follow a typical Langmuir-type behavior where saturation occurs.177 
Several scenarios may be hindering the process inclination to efficient adsorption, as a result of the negative KJ value 
(-0.02016 L/mg) obtained in Table 3. It might be multilayer adsorption, heterogeneous surface,178 chemisorption, 
competitive adsorption, poor diffusion and/or some kinetic limitations.

The strength of Cd2+ interaction with the MSS is described by Ks, which is ideally positive. In this case, the 
obtained Ks value of 20.41855 L/g suggests a relatively high affinity and efficient adsorption between Cd(II) and MSS 
adsorbent at lower Cd(II) concentration. In Sips, βs (ranging from 0 → 1) influence the shape of the adsorption isotherm 
curve, where a value closer to unity implies a strong and favorable cooperative adsorption behavior as well as a more 
pronounced curvature in the isotherm.31,179 Thus, βs = 1.15715 obtained herein, suggests a moderate curvature in the 
isotherm, where multiple layers of Cd2+ are being adsorbed on the MSS surface. The negativity of as (i.e., -0.04561 L/g) 
indicates that the adsorption process might experience some unfavorable conditions, possibly due to steric hindrance or 
repulsive interactions at certain sites on the adsorption surface. Essentially, the parameter accounts for heterogeneity in 
the MSS surface38 and provides insights into the distribution of adsorption energies.

Complementary derivations from the isotherm parameters can be found in the fit statistics reported in the same 
table. The Jovanovic model has a higher Reduced Chi-Squared value (14,238.67603) compared to the Sips model 
(22.00851), indicating that the Sips model provides a better fit to the experimental data. An R2 value for the Sips model 
of 0.99979 is significantly higher than that of the Jovanovic model (0.72307), suggesting that the Sips model explains 
a larger proportion of the variance in the data. The adjusted R2 value for the Sips model (0.99936) is also higher than 
that of the Jovanovic model (0.5846), further supporting the superior fit of the Sips model. Both models converged 
during the regression process, indicating that the optimization algorithm successfully found parameter values that 
minimized the difference between the model predictions and the experimental data. Generally, the fit statistics in Table 
3 demonstrate that the Sips model provides a more accurate and precise description of the sorption behavior of Cd2+ by 
MSS compared to the Jovanovic model.
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Table 3. Fit statistics and isotherm model parameters obtained

Jovanovic Sips

Parameter Value Value

qmax (mg/g) 97.51404 -

KJ (L/mg) -0.02016 -

Ks (L/g) - 20.41855

βs - 1.15715

as (L/g) - -0.04561

Statistics

Number of points 4 4

Degrees of freedom 2 1

Iterations performed 15 9

Reduced Chi-Sqr. 14,238.67603 22.00851

Residual sum of squares (RSS) 28,477.35207 22.00851

R2 0.72307 0.99979

Adj. R2 0.5846 0.99936

Fit status Converged Converged

3.5 Statistical error comparison

Seven error functions were used to calculate their corresponding values for Jovanovic and Sips’ data, as shown in 
Table 4.

Table 4. Calculated errors based on capacities of MSS adsorbents in both models

Error function
Value

Jovanovic Sips

SSE 28,477.37 22.00895

ARE 159.2978 6.845399

RMSE 97.42923 2.708564

HYBRID 25,364.88 96.25835

MPSD 1,592.635 98.11134

NSD 1,300.381 56.64461

SEE 119.326 4.69137
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Normally, lower SSE, ARE, RMSE, HYBRID, MPSD, NSD and SEE values point to better fits and consistency 
in prediction performance. Based on the estimates provided in Table 4, it is evident that the Sips biosorption isotherm 
model consistently outperforms the Jovanovic model across all error functions. Therefore, the Sips model can be 
considered the better-performing model for describing the adsorption behavior in this particular study.

3.6 Current study juxtaposed with previous findings

Looking at Table 5, only a few studies have investigated the Jovanovic isotherm parameters for the adsorption of 
Cd(II). Biosorbents used in those studies were nanoclay, sidr leaves, Cyprinus carpio scale, Allium cepa and coal fly 
ash.

Table 5. Adsorbents, adsorbates and Jovanovic parameters from previous study

Research Adsorbate Adsorbent qmax (mg/g) KJ (L/mg) or (L/g)

180 Curcumin Zinc imidazole framework-8 0.8632 0.3105

181 Sudan-IV Lipophilic activated carbon 214.7 0.025

110 Cd Sidr leaves powder 56.73 -0.0094

35 Dye in curcumin solution MSS 5.9316 0.1286

34 L-lysine Imprinted polymer 0.18588 0.31237

28 Cd Dried Allium cepa 1.6242 0.637

174 Zn Pulp waste 1.048-1.155 -0.030 to -0.017

124 Cd, Pb & As Cyprinus carpio scale NR NR

169 Curcumin solution Carbon from peanut shell 1.508 0.3331

169 Curcumin solution Carbon from rice husk 3.502 0.139

169 Curcumin solution Silica from rice husk 3.294 0.1727

169 Curcumin solution Tungsten oxide 1.614 0.3755

54 Cd Coal fly ash 539 0.024

54 Rhodamine B Coal fly ash 501 0.016

182 Ni Pandanus amaryllifolius stem ash NR NR

59 Cd Nanoclay 17.544-18.143 -0.0672 to -0.0748

183 Mono azo dye methyl orange Pinecone 297.77 0.025

184 Malachite green Desert date seed shell 26.59 0.06

173 Methylene blue Activated rice husk biochar -93.645 6.917

Current study Cd MSS 97.51404 -0.02016

NR-Not reported
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Table 6. Adsorbates, adsorbents and Sips parameters from preceding research

Study Adsorbate Adsorbent Ks (L/g) βs as (L/g) qmax (mg/g)

95 Cd Nanochitosan 5.837 0.729 - 2.036

185 Cd Nanochitosan 0.0412 1.37 - 1.96

94 Victoria blue Chitosan nanocomposite 0.11-0.30 0.49-0.74 - 601-683

134 Cd Corn silk 0.534 2.12 - 21.95

186 Synthetic dye Clay 0.16-1.88 0.36-0.75 - 15.69-31.97

181 Sudan-IV Lipophilic activated carbon 0.301 0.552 - 205.7

67 Cd Magnetite nanocomposite 0.016 0.64 - 76.67

179 Cu Groundnut shell 12.8689 1.25346 0.47347 -

179 Pb Groundnut shell 6.13959 1.54742 0.24345 -

179 Hg Groundnut shell 3.7113 1.6536 0.1544 -

100 Cd Activated sludge immobilized onto chitosan beads 0.039 0.58 - 216

100 Zn Activated sludge immobilized onto chitosan beads 0.014 0.57 - 188.3

137 Cu Pinewood biochar 0.46-1.12 1.52-2.71 - 86.2-112

140 Cd Orange waste 1.3 0.889 - 0.573

140 Zn Orange waste 2.31 0.575 - 0.453

172 Mn Acid activated shale 0.8649 0.8862 - 1.7561

172 Pb Acid activated shale 0.9219 0.9631 - 1.8180

60 Cd SiO2-Mg(OH)2 nanocomposite 0.0035-0.0152 1.5806-1.2674 - 121.23-141.49

66 Cd Poly (acrylamide-co Na acrylate) 7.58 × 10-4 1.1295 - 1,893.09

65 Cd Polyamido- amine functionalized silica 29.096 29.0846 NR -

52 Cd Tridax procumbens NR NR - NR

93 Cd Functionalized chitosan 0.171 9.44 - 228.1

187 Cu Granular activated carbon 394 1.11 - 0.095

187 Pb Granular activated carbon 164 1.32 - 0.146

187 Zn Granular activated carbon 792 0.94 - 0.058

92 Cd Chitosan-based hydrogel 0.5432-1.5050 0.6854-0.9435 - 175.01-234.83

92 Cd Polyacrylic acid-based hydrogel 0.0622-2.2294 0.7146-0.7277 - 158.26-197.91

71 Pb Zeolite 0.41 0.7 - 245.75

71 Cd Zeolite 1.62 2.81 - 4.43

71 Hg Zeolite 2.23 × 10-4 1.83 - 0.22

188 Mn Black carbon from rice straw 0.38 2.09 - 9.56

Current study Cd MSS 20.41855 1.15715 -0.04561 -

NR-Not reported
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Findings show that apart from MSS adsorbent used in this study to sorb Cd(II) and those previously reported in 
the literature (Table 5), an extensive investigation is still missing to properly gauge the performance of numerous other 
sorbents for Cd(II) sorption on the same level. Furthermore, it shows that a negative KJ value is not alien and qmax may 
differ depending on the experimental condition set. If the Jovanovic constant KJ is positive, it would indicate a positive 
correlation between the adsorbate concentration and qe. In other words, as the concentration of the adsorbate increases, 
qe also increases, which aligns with typical adsorption behavior. Before now, > 80% of studies reported a positive KJ as 
against this study’s findings. Even as the study herein resulted in unfitted Jovanovic predictions, the model is valid for 
several other adsorbate-adsorbent correlations (apart from Cd2+-MSS or Cd2+-others in Table 5); showing that it is one 
of the most least employed adsorption isotherm models. Reports show that Nandiyanto et al.169 used MSS to adsorb dye 
from curcumin solution, studying its Jovanovic parameters in contrast with the present study.

The Sips model is a 3-parameter isotherm equation that has been extensively used to describe Cd(II) biosorption 
using different adsorbents, as shown in Table 6. However, only the present study utilizes the model to describe MSS 
sorption behaviour, based on the extent of the literature search conducted.

A few other heavy metals engaged by researchers in the study of Sips parameters are Cu, Pb, Hg, Zn and Mn. Due 
to varying versions of the Sips isotherm model employed, the parameters often showcased are Ks, βs, qmax and as. There 
is a need to identify and use the correct Sips model when carrying out such an investigation. There is technically only 
one Sips isotherm equation, but the interpretation and characteristics of the isotherm can vary based on the value of the 
exponent. During Cd(II) sorption, βs > 1 in polyamido-amine functionalized silica, functionalized chitosan and zeolite 
utilization (Table 6), will exhibit a convex isotherm and a cooperative multilayer adsorption. But, when βs is not close to 
1, as in activated sludge immobilized onto chitosan beads and magnetite nanocomposite-Cd2+ sorption reported in Table 
6, it implied a departure from the typical sigmoidal curve shape (concave downwards), where antagonistic adsorption 
occurred. MSS-Cd sorption herein, is indicative of a favorable adsorption demonstrated by a concave upward sigmoid 
shape. Compared to Jovanovic, Sips isotherm is more studied in the literature, where it performed absolutely well in 
most cases.

4. Conclusion
Nonlinear regression analysis was fruitfully run to determine the isotherm parameters of Jovanovic and Sips 

biosorption of Cd(II) from water using MSS adsorbent. It was discovered that high R2 of 0.99979, low RSS, low % 
difference of < 20% and lower error function values realized for the Sips model, indicated a strong correlation between 
the predicted and experimental data, thereby validating the suitability of the isotherm for describing the adsorption 
process. With qmax = 97.51 mg/g, the Jovanovic model couldn’t describe the Cd(II) sorption from aqueous solution using 
MSS. The favorable adsorption performance of Sips isotherm in this study adds to the Langmuir model previously 
ascertain to be suitable for the same MSS data by Luka et al.167 Previous studies analyzed show that the two models 
could fit Cd2+ sorption data using various adsorbents and the MSS biomass employed herein adds to this list. FTIR 
analysis carried out already rated MSS high as regards the sorption of Cd2+. However, Thermal activation of MSS at 
controlled temperatures could increase the surface area and pore volume, enhancing the accessibility of adsorption sites 
for Cd2+. Further investigation and analysis, possibly using more adsorption models or experimental techniques, may 
be needed to understand the underlying mechanisms driving the observed behavior of Cd(II) sorption using MSS. A 
host of isotherm models that have not been run for similar adsorbate and adsorbent used in this study are Baudu, Fritz-
Schlunder, Weber-Van Vliet, Radke-Pravsniiz and Koble-Carrigan isotherm models.
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