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Abstract: Within the Boltzmann kinetic theory minimal dc conductivity of single and bilayer graphene is studied.
It is shown that the uncertainty principle plays a key role in graphene band structure. In the paper a new alternative
interpretation for minimal universal conductivity of single and bilayer graphene is proposed. Minimal conductivity
is determined by degenerate electrons and holes of the overlap range of electron and hole bands. It is established
that the minimal conductivity of single and bilayer graphene can be explained in the framework of one definite
physical approach based on the uncertainty relations. Within the proposed theoretical approach minimal
conductivity of both single-layer and bilayer graphene equals 4e’ / h . It is found that in crystals with parabolic

dispersion quantum expansion of an energy level E is asymmetric with respect to E ; in a crystal with linear
dispersion an energy level quantum expansion is symmetric.
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1. Introduction

Study of electronic transport in graphene is of great attention. The result of investigations has important
theoretical and applicable meaning. Among transport characteristics the conductivity holds a special place [1-4].
Nature of single and bilayer graphene conductivity has been discussed experimentally [5-10] and theoretically

[11-28]. As one of the remarkable properties of graphene nonzero minimal conductivity o, is noted.

Experimental observation shows that practically there is no difference between the minimal conductivity of the
single and the bilayer graphene. Minimal conductivity of both single and bilayer graphene is universal value and

equals 4e’ /h [5-10]. In the literature the existence of nonzero minimal conductivity at low temperatures
(T ~ OK) is presented as a unique, unusual, amazing or surprising feature of graphene. Authors believe that in
the limit of zero temperature there are no scattering and no current carriers, i.e., o, = 0 even at zero carrier

concentration. Characterization of minimal conductivity as “carrier free” and “scattering free” conductivity it
seems not a true interpretation of experimental data.

There are lots of theoretical papers which are devoted to the explanation of this feature. Graphene minimal
conductivity is studied using various phenomenological models and theoretical approaches: Boltzmann’s [11, 12]
and Landauer’s transport theories [13, 25], two-dimensional Drude model [11] and Kubo formalism [13-18],
polarization tensor formalism [19, 20], Born approximation [21], current-current correlation functions, etc [22—
24, 26-28]. For the qualitative perception, there has been discussed the posibility of the phenomenon to connect
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with the Klein’s paradox [1, 3, 14]. The results of different theoretical approaches can be presented (taking into
account spin and valleys) as: o, =4e’y/h , where y =7 /32; n/16; 1/4x; 1/ z , etc. [11-28].
Parameter y is the factor chracterising the difference between the theoretical results and experimental data. Note

there is essential disagreement with the experiment, y ~ 01+ 0.08 . Theoretical conductivity o .~ for both

single and bilayer graphene is a non-universal quantity and it is inferior to the experimental conductivity for
several times. In contrast to experimental data, theoretical works predict that minimal conductivities of single and
bilayer graphene are different.
Generalizing the results of the proposed theoretical approaches the following conclusions can be expressed:
- different theoretical approaches and calculation methods lead to different values

of o,, for the same graphene (single or bilayer) system;

- same theoretical approaches lead to different values of o, for the single and

bilayer graphene;

- theoretical results are nonuniversal and practically are not in agreement with

the measured data;

- nature of graphene minimal conductivity is not established finally.

The explanation of minimal conductivity of graphene systems within one definite physical approach still
remains a theoretical interest. At discussing the task for single and bilayer graphene, as a rule, a model of zero-
gap semiconductor with linear and quadratic low-energy dispersions is used, respectively. It is assumed that the
conduction and valence bands touch at the K and K’ critical points (Dirac points) of the Brillouin zone. This model
underlies almost all theoretical approaches proposed so far (see, e.g., theoretical papers cited above). On the other
hand, the value of the bandgap energy is one of the basic characteristics of a crystal. The concept of graphene as

a crystal with a zero (E, = 0) bandgap has a principle nature. Note that especially in crystals with a zero (or

rather small) bandgap, influence of various well-known effects (for instance, temperature effects, spatial and
temporal fluctuations of E  due to the lattice chaotic vibrations, effects conditioned by uncertainty principle etc.)

on E, become decisive. Therefore, there are real physical reasons to study electronic, partly conductivity features

of graphene whithin the uncertainty principle. Such investigations and detailed analyses practicaly have not been
carried out yet.

1.1 Task outline

For better understanding graphene properties in the present work, “minimal conductivity-uncertainty
principle” relationship is considered. Stating the task in this way is motivated by the view that graphene minimal
conductivity is a fundamental phenomenon. Below dc conductivity of intrinsic (perfect) single and bilayer
graphene at low temperatures (T ~ OK ) is analyzed. Consideration is carried out on the base of Boltzmann
semiclassical kinetic theory with taking into account well-known general conclusions of the solid state band theory
and the key principle of uncertainty (including energy-time as well as momentum-position uncertainties). As a
result of the discussion a new alternative interpretation for minimal universal conductivity of single and bilayer
intrinsic graphene is proposed.

2. Materials and methods

For the transparent physical understanding graphene conducting properties a semiclassical approach can be
used. Below low-temperature conductivity of single and bilayer intrinsic (defect-free) graphene are considered on
the base of Boltzmann’s transport theory.

i) Single-layer graphene. According to Boltzmann’s kinetic equation one valley electron conductivity o |
of single-layer graphene within the z -approximation [29, 30] is presented (taking into account spin) as follows:

2 ©
e df
o, =——[kdkviz —2 1)
27 dE
Here, k is the magnitude of the electron wave vector, 7 is the electron transport scattering (or relaxation)

time, E is the conduction electron energy, V. is the Fermi group velocity of the Dirac electron and f is the
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equilibrium (Fermi) distribution function of the conduction electrons. In Eq.(1) and below, electron and hole
conductivities are denoted by o and o, correspondingly.
The low-energy dispersion law of single-layer graphene is linear, E = £v _#k , where the £ signs refer to

the conduction and valence bands, respectively. Then converting integral over Kk to an integral over energy Eq.
(1) can be written in the form

e’ 7 df, ,
T)—,
d4E )

where E _ is the conduction band edge.
Such important features as magnitude and temperature dependence of o, are mainly determined by the

relaxation time 7 . At low (T ~ OK ) temperatures characteristic time z is determined by the scattering of

electrons off crystal boundaries (7 ) and off iLA (in-plane longitudinal acoustic) phonons (7 ):
1 1 1

—= —t —,

T Tac Ty

where 7. = L /v, L isthesize of a 2D crystal. Calculation of electron-iLA phonon scattering rate 1/t in

graphene at low temperature range is presented in Appendix.
Many physical properties of condensed matter are explained by band structure. At theoretical studies the
following classical model of the band structure of single-layer intrinsic graphene is widely used. It is assumed that

E. and E, edges of the conduction 7 * (or electron) and valence 7 (or hole) bands touch at the Dirac point,

E. = E,. At Dirac point is also the Fermi level, E. = E, = E_ . According to classic approach, a single

isolated graphene sheet is a zero-gap semiconductor (or zero overlap semimetal). On the other hand, each model
as a rule has certain limits of applicability. Therefore, before further estimation of the low-temperature
conductivity, let us first clarify some important details about the low-energy spectrum of single-layer graphene.
In areal crystal with finite sizes, motion of an electron is limited. As it is well-known, quantum confinement leads
to an electron non-zero minimal energy. Quasimomentum and energy of an electron in finite crystal space are
quantized. The effect of quantization on the physical properties is primarily determined by the sizes and
temperature of the crystal. In the case of confinement by space with macroscopic sizes the separation between
adjacent energy levels is extremely small. The adjacent values of allowed energy and quasimomentum are
separated by albeit small but finite intervals. In Figure 1a low-energy spectrum of single layer graphene crystal
with finite sizes is plotted near Dirac point. From a discrete set of energy levels in Figure 1a only the first (lowest)

E.., E,, andsecond E_,, E, , allowed levels of electron and hole bands, are represented, respectively. Note,
that holes energy axis is directed opposite the direction of conduction electron energy axis E, (Figure 1 and 2).
For the convenience of further discussion, in Figure la formally presents also the conduction E_ and hole
(valence) E,, band edges, which are not allowed levels. E_ and E energy levels are forbidden levels. Between

the lowest levels E, ; and E_, lies a range of forbidden energies E, =E_, - E,,.

Figure 1. Low-energy band structure of single-layer intrinsic graphene K valley in the case of: a) - ignored energy uncertainty, b) — presence

of energy uncertainty AE b associated with quasimomentum-position uncertainty; c) - presence energy total uncertainty AE
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Another important feature of an energy spectrum of a crystal with finite sizes is related to uncertainty
relations. Energy level E is characterized by width, which is determined by the energy uncertainty AE as 2AE .
Energy uncertainty AE (or standard deviation), in turn, is related to AE = quasimomentum-position

(Ap,Ax = 1/ 2) and aE_ energy-time (AE 7 = /1) uncertainties. Here Ap, and AX are standard deviations
of electron quasimomentum and position, respectively. So, in the direction of motion, an electron quasimomentum

2

uncertainty Ap (where Ap=+/p° — p? ) leads to energy uncertainty AE , due to E(p) dependence. As
well-known, on the base of momentum-position uncertainty the minimal energy of an electron can be evaluated.
Minimal energy is calculated by the standard procedure: assuming that momentum uncertainty should not exceed

the momentum itself AE  , the condition p ; =~ Ap . is applied. In the case of single-layer graphene with

linear dispersion E = v_ p one obtains that conduction electron minimal energy (E . =v_p,, ) and the

E, . component of the minimal energy uncertainty (AE ;- =V Ap,, ) are equal quantities, AE / =E .

Taking into account that in Figure 1a the minimal energy of a conduction electron is denoted by AE ovi = E..

it can be stated that AE , =E i.e. the uncertainty AE determined by quasimomentum-position

cl’? pc,1?
uncertainty relation is equal to the energy E _, (i.e.isequaltodistance E, + E_, or E_ + E_ ). Note, that this
feature has a general character and does not depend on the graphene crystal size and temperature. Similarly the

low-energy spectrum of the hole band can be considered and it can be stated that the hole minimal energy E

is equal to the uncertainty AE | , of the energy level E,,,i.e. AE  , = E, . Thus, if one takes into account

v,1?
quasimomentum uncertainty only, one can state that the single-layer graphene is a zero-gap semiconductor,
E, =0, see Figure 1b. However, this conclusion cannot be considered as final yet; it is an intermediate
conclusion. Presented in Figure 1b band structure significantly changes if one now takes also into account the
second component of energy uncertainty AE _, which is related to energy-time uncertainty relation AE_ ~ 7 /7
of energy levels E_, and E . As shown in Figure 1c, the actual edge of the conduction band, which denoted
by E..,islocated now inside the valence band. The actual edge of valence band, denoted by E ., is located inside

the conduction band. Thus, due to total uncertainty AE = AE | + AE_, conduction and valence bands overlap.

Therefore, it can be stated that within a more accurate approach single-layer intrinsic graphene is a semimetal
with a non-standard (direct band) band structure (or a semiconductor with a negative band-gap E; = —2AE ).

In the given case, the Fermi level g, is in conduction and valence bands simultaneously, E. = E_. + AE _,

E-. =E, —AE_. Here it should be noted that the uncertainty principle has a significant meaning and is

manifested in various physical phenomena. Particularly, the well-known effect of temperature dependence of a
semiconductor band-gap width is explained by the energy uncertainty.

Let us now calculate the graphene electron one valley conductivity o, on the base of the band structure
plotted in Figure 1c. For the calculation, the following equation should be used instead of Eq.(2)

e’ % df
o, =- dE(E7)—2, 3
27h’ EJ ( )dE )
where
[ (E.+E-E,) |
fo=|exp| ——-—F|+1] . )
L KeT |

Using the relation df /dE|T=0 =-0(E,. + E-E.) from Eg. (3) one obtains

2
e
O-n (T = 0) = 27Z_h2 (ET)T:O,E:EF—Ec, . (5)
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Since E. = E_ + AE_, where AE_ =7 /7 for the minimal conductivity of one valley electrons (taking
into account spin) the following expression is obtained:
=o, (T=0)=e’/h. (6)

o

n,min

In similar fashion, hole band should be considered and the minimal conductivity of holes & should be

p,min

calculated. According to Figure 1c band structure the Fermi level E_ is located inside the valence band at the

distance AE_ belowtheedge E,, E. = E . — AE_. Minimal conductivity o , .

in

is due to degenerated gas
of holes of the range E . < E < E . For the minimal conductivity of one valley holes (taking-taken into account

spin) o = e’ /h isobtained. Thus, for the minimal value of total conductivity of single-layer graphene the

p,min
following result is obtained (taking into account spin and two valleys)
2
Gmin =2(O-p‘n1'n +O_n,min )=4e /h (7)
Aswe can see, o, Isdetermined by fundamental constants and does not depend on characteristic time 7 .

ii) Bilayer graphene. Like single-layer, within the classical model an intrinsic bilayer graphene is a zero-
gap semiconductor, but the conduction and hole bands of which are parabolic touching. Now let us apply presented

in the previous section i) AE -approach to study bilayer graphene minimal conductivity. First, let us analyze the
energy spectrum of bilayer graphene on the base of uncertainty principle. Energy uncertainty AE (or standard

deviation AE = VE? — E 2 ) is interpreted as an energy level expansion. Due to the uncertainty the energy
level e is transformed into an energy range [E ; E_ ] with the width 2AE . Top E, and bottom E  edges of

the energy range [E ;E ] are symmetric with respect to quantum mechanical average value E :

E_=E - AE, E, = E + AE . However, for the caculation of O i

., the location of the edge E_ with
respect to level  is important. In the case of linear dispersion, average value E coincides with the energy E .

Consequently, the energy level expansion in single-layer graphene is symmetric with respect to E aswell as to
E . In bilayer graphene with low-energy parabolic dispersion one have other situation. So, quasimomentum

uncertainty Ap through E = p2 /2m dependence leads to the energy uncertainty. Top E_ and bottom E

edges of the energy range [E ; E, ] now are determined as follows

(p+Ap)° _ _ (Ap)® +2pAp

E, = ®)
2m 2m
— Ap)? Ap)® - 2pA
g _(P=AP)" . (Ap)" —2pAp ©)
2m 2m
Minimal width of energy level E is determined as
2plA
E,+E_= M (10)
m

As one can see from Eqs.(8)-(9), E, and E_ edges are asymmetric with respect to E . Now let us this
peculiarity apply to the lowest energy level E_; of the bilayer graphene conduction band. Using standard

condition p_.. =~ Ap, from Egs. (8), (9) and (10) for the expansion range [E_, ; E_,, ] of the energy level

cl+

E ., one have

3(Apmin )2 (Apn‘in )2
Y cl T o

2m 2m

(1)

(12)
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If one denotes the width E_, —-E_, by 2AE, (e E.,, -E, =2AE  , where

c,1l+ c,1l-
2 .
AE o = (AP, )"/ m), then one can state that the level E ¢ €xpands upwards and downwards by a magnitudes

3AE /2 and AE /2, respectively,

3 1
Eou =B+ JAE, Bl =B - JAE,. (13)

c,l
This ratio of asymmetric expansion has a general nature. The expansion 2AE  related with the energy-time
uncertainty is asymmetric also - the level E_, expands upwards and downwards by magnitudes 3AE_ /2 and

AE_ /2, respectively. Thus, in the case of parabolic dispersion the total uncertainty AE = AE , tAE s
distributed as follows

3 1
Ec,l+ = Ec,l + EAE ’ Ec,l— = Ec,l - EAE . (14)

In particular, the second relation of Eq.(14) can be represented as follows

E

o1 :Ecyl—%(AEp +AE)). (15)
Using the standard condition p . ~Ap and estimate the minimal energy E_, , one obtains

E..= P, /2m=(Ap,,)° /2m = AE /2. Therefore, from relation (15) one will have

E.. =-AE /2=-hz/2. (16)

In similar fashion, hole band edge E , should be considered. For the edge E, , of the expansion range

[Ev,l— v B ] of the lowest energy level E , of the hole band the similar expression is obtained

E,, =-AE_/2=-hr/2. 17)

v,1-

Figure 2. Band structure of an intrinsic bilayer graphene K valley at energy uncertainty ignored (a) and presence (b) cases

In Figure 2 shows a low-energy spectrum of an intrinsic bilayer graphene in the cases of ignored (a) and
presence (b) of energy uncertainty. As shown in Figure 2b, the actual edge E_. of the conduction band (i.e., the

edge E_, of the range [Ec,l—; E ] E.. = E.)islocated inside the valence band, at the distance 7 /27

cl+

from the Fermi level, E.. = E_. — 7 /27 . Theactual edge E,. of the hole band (i.e., the edge E,, of the range

[E E ] E,.. = E,.)islocated inside the conduction band, at the distance 7 /27 from the Fermi level,

v,l—; vl,+
E, = E; + 1/ 27 . Therefore, intrinsic bilayer graphene is a semimetal also whose conduction and valence
bands are overlapped by magnitude 7 /7. Now based on the band structure presented in Figure 2b electron
conductivity o, is calculated. According to Boltzmann's theory, one valley electron dc conductivity of a bilayer

graphene can be represented by the following relation (taking into account the spin)
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eZ

h’®

o, =-

jdE(Er)df—O, (18)
: dE

where E. =E_. —h/27.

Attemperature T = 0K fromEq.(18) o, (T =0) =0 =e? /h isobtained. In a similar way for the

n,min

hole minimal conductivity of a one valley (taking into account the spin) o = e’ /h isobtained. Therefore,

p.min
for the minimal conductivity of intrinsic bilayer graphene (taking into account spin and two valleys) one has
o, =4e’/h.

3. Results and Discussion

Minimal conductivity and other important transport or electronic properties of a crystal are primarily related
to the energy spectrum. According to the above-presented approach, if one ignores uncertainties quantum effects,

then conduction and valence bands of a single and bilayer graphene are separated by forbidden range, Eg #0,

see Figure laand 2a, E, = E_, — E,, . If one take into account the quasimomentum-position uncertainty only,
then conduction and valence bands are touching each other, E = 0 . If one takes into account the energy-time
uncertainty as well, then conduction and valence bands are overlapping, E; < 0. Bands overlap is determined

by the energy-time uncertainty AE_ and consequently by characteristic time z and the crystal sizes L (see, Eq.

(A\9)). Single-layer graphene bands overlap is 27 / 7 ; bilayer graphene bands overlap is 7/ z . So, for example,
the overlap of single-layer graphene with L =200 nm is ~ 6 meV. For comparison, note the overlap of three-
dimensional graphite bands is ~ 40 meV (experiment) or about 8 + 30 meV (theory). Thus, intrinsic single and
bilayer graphene crystals are semimetals with a slightly overlap bands. Therefore, graphene must have and has
the semimetallic behavior. Semimetals are characterized by a weak bands overlap; conductivity is always finite
and non-zero; in the minimal conductivity electrons as well as holes have contributions.

Within the above-proposed Boltzmann's quasi-classical ae -model, minimal conductivity o, of both

single layer and bilayer graphene is equal to 4e”/h . It is a universal quantity and does not depend on the

characteristic time z and the 2D crystal sizes L . Note, first, the expression o, =4e” / h is differ from the
expressions obtained in other theoretical papers by using various calculation methods. Second, which is very
important, the value o is in complete agreement with the experimental data and it is not “carrier free”
conductivity. The proposed theoretical approach predicts that the minimal conductivity of bilayer graphene is not
different from that of single layer graphene.

Note that evaluations which were carried out on the base of uncertainty relations usually are considered as
qualitative. On the other hand, the result &, = 4e” / h, which is also obtained on the base of the uncertainty

principle, directly coincides with the experimental data. Therefore, it can also be considered as quantitative result.
In solid state physics, there are cases when results of estimations based on the uncertainties coincide with the
experimental data and/or with the results of more accurate calculations. Other important conclusion of the
presented approach is the following. In crystals with parabolic dispersion, quantum expansion of an energy level
E is asymmetric with respect to E . In particular, expansion 2AE of the lowest energy level of the conduction
and hole bands are distributed as follows — 1/4 part downward and 3/4 part upward. In the case of linear dispersion,
the lowest energy level expansion 2AE is symmetric — 1/2 part downward and 1/2 part upward.

4. Conclusions

So, the main conclusions of the paper are the following:
1. incrystals with parabolic dispersion, quantum expansion of an energy level is asymmetric;
2. in crystals with linear dispersion, quantum expansion of an energy level is symmetric;
3. single and bilayer intrinsic graphene are semimetals whose bands overlap determined by the

uncertainties relations and equal 2% /7 and 7%/ z , respectively;

Volume 1 Issue 2|2023| 7 Universal Journal of Carbon Research



4. minimal conductivity 4e’ Ih of single and bilayer intrinsic graphene is determined by
the degenerated electrons and holes of the overlap range of allowed bands.
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Appendix
Rate of electron intravalley scattering off iLA phonons is given by [30, 31]
—Z ( cos 2 0N 5y S(EK) —E(K') + ho™ )+
Tac k'.q 2 A (Al)

+(N, +l)5k.‘k_q5(E(k) —E(k)-ho™)).
Here k and g are the electron and phonon wave vectors (boldface type is used to represent vectors),

respectively, & is the angle between k and k' vectors (scattering angle), Nq is the phonons equilibrium
distribution function, p is the mass density of graphene, A is the area of graphene sheet, a);C is the iLA

phonon frequency, D,  is the acoustic phonon intravalley deformation potential. In expression (Al) the

Kronecker delta o expresses quasimomentum conservation, and the delta function, energy conservation.

k' ,k—-q

The relaxation rate 1/ 7, consists of two components, 1/z, =1/7, , +1/7z . Thefirsttermon the

ac,em

r.h.s. of the sum (A1) describes the electron scattering with phonon induced absorption (¢ ). The second term

ac,ab

on the r.h.s. of the sum (A1) describes the electron scattering with induced and spontaneous emission of phonon

(Tacem) At T ~ OK temperatures Nq T—:00 and electron-phonon scattering is due to phonon spontaneous

emission only. Therefore, at low temperatures from Eq. (A1) for the relaxation rate 1/ 7, one has

. ‘Zszw“ (L= cos* )5, (0(EK) - ECK) = h0"). (2)
K'.q

ac ac,em

A simple summation over K" is carried out using Kronecker delta &,. , _, . For further calculations it is taken

into account that iLA phonons dispersion law of single-layer graphene is linear, a);“ =V,.q,where v__ isthe

acoustic phonon velocity [13, 30, 32] Then from Eq.(A2) one obtains

i _ 2 — —_ _
- ZZh AV.Y_ (L-cos? 0)5(k lk —q qv,. /v, ). (A3)

ac

It is more convenient that the polar coordinate axis is directed along vector k and the following transition
from sum to integration is used

Omax 27

j q= [ Jadgde. (A4)
) Qmin O
where « is the angle between vectors k and q .
Converting the sum (A3) to an integral one have
1 D 2 OUmax 27
— = jdqdal cos?0)qs(k - [k —a|-aqv,. /v, ), (A5)

7’-ac 8”thFVac Qmin O
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where & -function expresses the energy conservation law. Limits of the integration over ¢ are determined by the
energy conservation as follows: q, =0, q,,, = 2k/(1+b), where b = v, /v_ . Using the well-known

property of o -function,
O(X—X,)
S(p())=———3", A6
0" (%) (AB6)
Eq.(A5) can be presented as

T o\ Jk=ba| 2kb +(1-b%)q
T__W'[ quda(l—cos H)qT5(cosa—T : (A7)

ac ac gy, 0

Here X, is the solution of equation @ (x) = 0
Using the following relationship between angles € and «
kk'  k(k-q)
Kk Kk -q]

(k? —kqcos o)
kz(k2 +q° — 2kq cos a)'

integrations in Eq.(A7) is curried out first over a. (J -integration) and then over ¢ . As result, taking into

cos O = or cos’ 0 =

account b=v_ /v <<1 inequality (v, ~ 210" mis, Vo ~10° m/s [13, 30, 32]) the following
expression for low-temperature 7 is obtained

1 4DZE®

.. 15zph’viv,

ac

(A8)

This relation characterizes basic peculiarities of low-temperature electron-iLA phonon scattering rate in
single-layer graphene. Thus, in the low-energy range the electron total scattering rate can be presented as
1 4D’E? v
e o (A9)
t 15zph'vev,, L
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