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Abstract: Within the Boltzmann kinetic theory minimal dc conductivity of single and bilayer graphene is studied. 

It is shown that the uncertainty principle plays a key role in graphene band structure. In the paper a new alternative 

interpretation for minimal universal conductivity of single and bilayer graphene is proposed. Minimal conductivity 

is determined by degenerate electrons and holes of the overlap range of electron and hole bands.  It is established 

that the minimal conductivity of single and bilayer graphene can be explained in the framework of one definite 

physical approach based on the uncertainty relations. Within the proposed theoretical approach minimal 

conductivity of both single-layer and bilayer graphene equals he /4
2

. It is found that in crystals with parabolic 

dispersion quantum expansion of an energy level E  is asymmetric with respect to E ; in a crystal with linear 

dispersion an energy level quantum expansion is symmetric. 
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1. Introduction 
 

Study of electronic transport in graphene is of great attention. The result of investigations has important 

theoretical and applicable meaning. Among transport characteristics the conductivity holds a special place [1–4]. 

Nature of single and bilayer graphene conductivity has been discussed experimentally [5–10] and theoretically 

[11–28]. As one of the remarkable properties of graphene nonzero minimal conductivity 
min

  is noted. 

Experimental observation shows that practically there is no difference between the minimal conductivity of the 

single and the bilayer graphene. Minimal conductivity of both single and bilayer graphene is universal value and 

equals he /4
2

 [5–10]. In the literature the existence of nonzero minimal conductivity at low temperatures 

( KT 0~ ) is presented as a unique, unusual, amazing or surprising feature of graphene. Authors believe that in 

the limit of zero temperature there are no scattering and no current carriers, i.e., 0
min

  even at zero carrier 

concentration. Characterization of minimal conductivity as “carrier free” and “scattering free” conductivity it 

seems not a true interpretation of experimental data.   

There are lots of theoretical papers which are devoted to the explanation of this feature. Graphene minimal 

conductivity is studied using various phenomenological models and theoretical approaches: Boltzmann’s [11, 12] 

and Landauer’s transport theories [13, 25], two-dimensional Drude model [11] and Kubo formalism [13–18], 

polarization tensor formalism [19, 20], Born approximation [21], current-current correlation functions, etc [22–

24, 26–28]. For the qualitative perception, there has been discussed the posibility of the phenomenon to connect 
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with the Klein’s paradox [1, 3, 14]. The results of different theoretical approaches can be presented (taking into 

account spin and valleys) as: he /4
2

min
 = , where  /1  ;4/1  ;16/  ;32/= , etc. [11-28]. 

Parameter   is the factor chracterising the difference between the theoretical results and experimental data. Note 

there is essential disagreement with the experiment, 080 10~ ..  . Theoretical conductivity 
min

  for both 

single and bilayer graphene is a non-universal quantity and it is inferior to the experimental conductivity for 

several times. In contrast to experimental data, theoretical works predict that minimal conductivities of single and 

bilayer graphene are different.  

Generalizing the results of the proposed theoretical approaches the following conclusions can be expressed:   

- different theoretical approaches and calculation methods lead to different values 

      of 
min

  for the same graphene (single or bilayer) system;  

- same theoretical approaches lead to different values of 
min

  for the single and  

      bilayer graphene; 

- theoretical results are nonuniversal and practically are not in agreement with 

     the measured data;   

- nature of graphene minimal conductivity is not established finally.  

The explanation of minimal conductivity of graphene systems within one definite physical approach still 

remains a theoretical interest. At discussing the task for single and bilayer graphene, as a rule, a model of zero-

gap semiconductor with linear and quadratic low-energy dispersions is used, respectively. It is assumed that the 

conduction and valence bands touch at the K and K' critical points (Dirac points) of the Brillouin zone. This model 

underlies almost all theoretical approaches proposed so far (see, e.g., theoretical papers cited above). On the other 

hand, the value of the bandgap energy is one of the basic characteristics of a crystal. The concept of graphene as 

a crystal with a zero ( 0=
g

E ) bandgap has a principle nature. Note that especially in crystals with a zero (or 

rather small) bandgap, influence of various well-known effects (for instance, temperature effects, spatial and 

temporal fluctuations of 
g

E  due to the lattice chaotic vibrations, effects conditioned by uncertainty principle etc.) 

on 
g

E  become decisive. Therefore, there are real physical reasons to study electronic, partly conductivity features 

of graphene whithin the uncertainty principle. Such investigations and detailed analyses practicaly have not been 

carried out yet.  

 

1.1 Task outline 
 

For better understanding graphene properties in the present work, “minimal conductivity-uncertainty 

principle” relationship is considered. Stating the task in this way is motivated by the view that graphene minimal 

conductivity is a fundamental phenomenon. Below dc conductivity of intrinsic (perfect) single and bilayer 

graphene at low temperatures ( KT 0~ ) is analyzed. Consideration is carried out on the base of Boltzmann 

semiclassical kinetic theory with taking into account well-known general conclusions of the solid state band theory 

and the key principle of uncertainty (including energy-time as well as momentum-position uncertainties). As a 

result of the discussion a new alternative interpretation for minimal universal conductivity of single and bilayer 

intrinsic graphene is proposed.  

 

2. Materials and methods 
 

For the transparent physical understanding graphene conducting properties a semiclassical approach can be 

used. Below low-temperature conductivity of single and bilayer intrinsic (defect-free) graphene are considered on 

the base of Boltzmann’s transport theory.  

i) Single-layer graphene. According to Boltzmann’s kinetic equation one valley electron conductivity 
n

  

of single-layer graphene within the  -approximation [29, 30] is presented (taking into account spin) as follows:  





−=

0

02

2

v
2 dE

df
kdk

e
Fn



  (1) 

Here, k  is the magnitude of the electron wave vector,   is the electron transport scattering (or relaxation) 

time, E  is the conduction electron energy, 
F

v  is the Fermi group velocity of the Dirac electron and 
0

f  is the 
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equilibrium (Fermi) distribution function of the conduction electrons. In Eq.(1) and below, electron and hole 

conductivities are denoted by 
n

  and 
p

 , correspondingly. 

The low-energy dispersion law of single-layer graphene is linear, kE
F
v= , where the   signs refer to 

the conduction and valence bands, respectively. Then converting integral over k  to an integral over energy Eq. 

(1) can be written in the form 

( )



−=

c

0

2

2

2
E

n
dE

df
EτdE

e


 , (2) 

where 
c

E  is the conduction band edge. 

Such important features as magnitude and temperature dependence of 
n

  are mainly determined by the 

relaxation time  . At low ( KT 0~ ) temperatures characteristic time   is determined by the scattering of 

electrons off crystal boundaries (
s

 ) and off iLA (in-plane longitudinal acoustic) phonons (
ac

 ):  

sac


111
+= , 

where 
Fs

L v/= , L  is the size of a 2D crystal. Calculation of electron-iLA phonon scattering rate 
ac
/1  in 

graphene at low temperature range is presented in Appendix. 

Many physical properties of condensed matter are explained by band structure. At theoretical studies the 

following classical model of the band structure of single-layer intrinsic graphene is widely used. It is assumed that 

c
E  and 

v
E  edges of the conduction *  (or electron) and valence   (or hole) bands touch at the Dirac point, 

vc
EE = . At Dirac point is also the Fermi level, 

F
EEE ==

vc
. According to classic approach, a single 

isolated graphene sheet is a zero-gap semiconductor (or zero overlap semimetal). On the other hand, each model 

as a rule has certain limits of applicability. Therefore, before further estimation of the low-temperature 

conductivity, let us first clarify some important details about the low-energy spectrum of single-layer graphene. 

In a real crystal with finite sizes, motion of an electron is limited. As it is well-known, quantum confinement leads 

to an electron non-zero minimal energy. Quasimomentum and energy of an electron in finite crystal space are 

quantized. The effect of quantization on the physical properties is primarily determined by the sizes and 

temperature of the crystal. In the case of confinement by space with macroscopic sizes the separation between 

adjacent energy levels is extremely small. The adjacent values of allowed energy and quasimomentum are 

separated by albeit small but finite intervals. In Figure 1a low-energy spectrum of single layer graphene crystal 

with finite sizes is plotted near Dirac point. From a discrete set of energy levels in Figure 1a only the first (lowest) 

1,c
E , 

1,v
E  and second 

2,c
E , 

2,v
E  allowed levels of electron and hole bands, are represented, respectively. Note, 

that holes energy axis is directed opposite the direction of conduction electron energy axis 
k

E  (Figure 1 and 2). 

For the convenience of further discussion, in Figure 1a formally presents also the conduction 
c

E  and hole 

(valence) 
v

E  band edges, which are not allowed levels. 
c

E  and 
v

E  energy levels are forbidden levels. Between 

the lowest levels 
1,v

E  and 
1,c

E  lies a range of forbidden energies 
1,v1,

EEE
cg

−= . 

 

 
 

Figure 1. Low-energy band structure of single-layer intrinsic graphene K valley in the case of: a) - ignored energy uncertainty, b) – presence 

of energy uncertainty 
p

E  associated with quasimomentum-position uncertainty; c) - presence energy total uncertainty E  
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Another important feature of an energy spectrum of a crystal with finite sizes is related to uncertainty 

relations. Energy level E  is characterized by width, which is determined by the energy uncertainty E  as E2 . 

Energy uncertainty E  (or standard deviation), in turn, is related to 
p

E  quasimomentum-position 

( 2/ xp
x

) and 


E  energy-time (  E ) uncertainties. Here 
x

p  and x  are standard deviations 

of electron quasimomentum and position, respectively. So, in the direction of motion, an electron quasimomentum 

uncertainty p  (where  
22

ppp −= ) leads to energy uncertainty 
p

E  due to )( pE  dependence. As 

well-known, on the base of momentum-position uncertainty the minimal energy of an electron can be evaluated. 

Minimal energy is calculated by the standard procedure: assuming that momentum uncertainty should not exceed 

the momentum itself 
1,pc

E  the condition 
minmin

pp   is applied. In the case of single-layer graphene with 

linear dispersion pE
F

v=  one obtains that conduction electron minimal energy (
minmin

v pE
F

= ) and the 

1,v
E  component of the minimal energy uncertainty (

minmin,
v pE

Fp
= ) are equal quantities, 

min
EE

p
= . 

Taking into account that in Figure 1a the minimal energy of a conduction electron is denoted by 
1,v1,v

EE
p

=  

it can be stated that 
1,1, cpc

EE = , i.e. the uncertainty 
1,pc

E , determined by quasimomentum-position 

uncertainty relation is equal to the energy 
1,c

E  (i.e. is equal to distance 
1,cc

EE   or 
1,cF

EE  ). Note, that this 

feature has a general character and does not depend on the graphene crystal size and temperature. Similarly the 

low-energy spectrum of the hole band can be considered and it can be stated that the hole minimal energy 
1,v

E  

is equal to the uncertainty 
1,vp

E  of the energy level 
1,v

E , i.e. 
1,v1,v

EE
p

= . Thus, if one takes into account 

quasimomentum uncertainty only, one can state that the single-layer graphene is a zero-gap semiconductor, 

0=
g

E , see Figure 1b. However, this conclusion cannot be considered as final yet; it is an intermediate 

conclusion. Presented in Figure 1b band structure significantly changes if one now takes also into account the 

second component of energy uncertainty 


E , which is related to energy-time uncertainty relation 


/E  

of energy levels 
1,c

E  and 
1,v

E . As shown in Figure 1c, the actual edge of the conduction band, which denoted 

by 
'c

E , is located now inside the valence band. The actual edge of valence band, denoted by 
'v

E , is located inside 

the conduction band. Thus, due to total uncertainty 
EEE

p
+= , conduction and valence bands overlap. 

Therefore, it can be stated that within a more accurate approach single-layer intrinsic graphene is a semimetal 

with a non-standard (direct band) band structure (or a semiconductor with a negative band-gap 
EE

g
−= 2 ). 

In the given case, the Fermi level 
F

E  is in conduction and valence bands simultaneously, 


EEE
cF

+=
'

, 


EEE

F
−=

'v
. Here it should be noted that the uncertainty principle has a significant meaning and is 

manifested in various physical phenomena. Particularly, the well-known effect of temperature dependence of a 

semiconductor band-gap width is explained by the energy uncertainty.    

Let us now calculate the graphene electron one valley conductivity 
n

  on the base of the band structure 

plotted in Figure 1c. For the calculation, the following equation should be used instead of Eq.(2) 





−=

'c

0

2

2

)(
2

E

n
dE

df
EdE

e






, (3) 

where 
1

c'

0
1exp

−
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 −+
=

Tk

EEE
f

B

F
. (4) 

Using the relation )(/
'c00 FT

EEEdEdf −+−=
=

  from Eq. (3) one obtains 

'c,02

2
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2

)0(
EEETn F

E
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T
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. (5) 
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Since 


EEE
cF

+=
'

, where 


/=E  for the minimal conductivity of one valley electrons (taking 

into account spin) the following expression is obtained: 

heT
nn

/)0(
2

min,
===  . (6) 

In similar fashion, hole band should be considered and the minimal conductivity of holes 
min,p

  should be 

calculated. According to Figure 1c band structure the Fermi level 
F

E  is located inside the valence band at the 

distance 


E  below the edge 
v'

E , 


EEE
F

−=
'v

. Minimal conductivity 
min,p

  is due to degenerated gas 

of holes of the range 
F

EEE 
v'

. For the minimal conductivity of one valley holes (taking-taken into account 

spin) he
p

/
2

min,
=  is obtained. Thus, for the minimal value of total conductivity of single-layer graphene the 

following result is obtained (taking into account spin and two valleys)   

( ) he
np

/42
2

min,min,min
=+=  . (7) 

As we can see, 
min

  is determined by fundamental constants and does not depend on characteristic  time τ .  

ii) Bilayer graphene. Like single-layer, within the classical model an intrinsic bilayer graphene is a zero-

gap semiconductor, but the conduction and hole bands of which are parabolic touching. Now let us apply presented 

in the previous section i) E -approach to study bilayer graphene minimal conductivity. First, let us analyze the 

energy spectrum of bilayer graphene on the base of uncertainty principle. Energy uncertainty E  (or standard 

deviation 
22

EEE −= ) is interpreted as an energy level expansion. Due to the uncertainty the energy 

level E  is transformed into an energy range ];[
+−

EE  with the width E2 . Top 
+

E  and bottom 
−

E  edges of 

the energy range ];[
+−

EE  are symmetric with respect to quantum mechanical average value E : 

EEE −=
−

, EEE +=
+

. However, for the caculation of 
min,n

  the location of the edge 
−

E  with 

respect to level E  is important. In the case of linear dispersion, average value E  coincides with the energy E . 

Consequently, the energy level expansion in single-layer graphene is symmetric with respect to E  as well as to 

E . In bilayer graphene with low-energy parabolic dispersion one have other situation. So, quasimomentum 

uncertainty p  through mpE 2/
2

=  dependence leads to the energy uncertainty. Top 
+

E  and bottom 
−

E  

edges of the energy range ];[
+−

EE  now are determined as follows  

m

ppp
E

m

pp
E

2

2)(

2

)(
22

+
+=

+
=

+  , (8) 

m

ppp
E

m

pp
E

2

2)(

2

)(
22

−
+=

−
=

− . (9) 

Minimal width of energy level E  is determined as 

m

pp
EE


=+

−+

2
. (10) 

As one can see from Eqs.(8)-(9), 
+

E  and 
−

E  edges are asymmetric with respect to E . Now let us this 

peculiarity apply to the lowest energy level 
1,c

E  of the bilayer graphene conduction band. Using standard 

condition 
minmin

pp   from Eqs. (8), (9) and (10) for the expansion range ];[
1,1, +− cc

EE  of the energy level 

1,c
E  one have  

m

p
EE

cc
2

)(3
2

min

1,1,


+=

+  ,    
m

p
EE

cc
2

)(
2

min

1,1,


−=

− , (11) 

m

p
EE

cc

2

min

1,1,

)(2 
=−

−+ . (12) 
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If one denotes the width 
−+

−
1,1, cc

EE  by 
p

E2  (i.e. 
pcc

EEE −
−+

2
1,1,

, where 

mpE
p

/)(
2

min
 ), then one can state that the level 

1,c
E  expands upwards and downwards by a magnitudes 

2/3
p

E  and 2/
p

E , respectively, 

pcc
EEE +=

+
2

3
1,1,

 ,    
pcc

EEE −=
−

2

1
1,1,

. (13) 

This ratio of asymmetric expansion has a general nature. The expansion 


E2  related with the energy-time 

uncertainty is asymmetric also - the level 
1,c

E  expands upwards and downwards by magnitudes 2/3


E  and 

2/


E , respectively. Thus, in the case of parabolic dispersion the total uncertainty 
EEE

p
+=  is 

distributed as follows 

EEE
cc

+=
+

2

3
1,1,

 ,   EEE
cc

−=
−

2

1
1,1,

. (14) 

In particular, the second relation of Eq.(14) can be represented as follows 

)(
2

1
11, 

EEEE
pc,c

+−=
−

. (15) 

Using the standard condition 
minmin

pp   and estimate the minimal energy 
1,c

E , one obtains 

2/2/)(2/
2

min

2

min1, pc
EmpmpE === . Therefore, from relation (15) one will have 

2/2/
1,




−=−=
−

EE
c . (16) 

In similar fashion, hole band edge 1,v
E  should be considered. For the edge −1,v

E  of the expansion range 

 
+− 1,v1,v

; EE  of the lowest energy level 1,v
E  of the hole band the similar expression is obtained 

2/2/
1,v




−=−=
−

EE . (17) 

 

 
 

Figure 2. Band structure of an intrinsic bilayer graphene K valley at energy uncertainty ignored (a) and presence (b) cases 

 

In Figure 2 shows a low-energy spectrum of an intrinsic bilayer graphene in the cases of ignored (a) and 

presence (b) of energy uncertainty. As shown in Figure 2b, the actual edge 
'c

E  of the conduction band (i.e., the 

edge −1,c
E  of the range  

+− 1,1,
;

cc
EE , '1, cc

EE 
− ) is located inside the valence band, at the distance τ2/  

from the Fermi level, 2/
'

−=
Fc

EE . The actual edge 
'v

E  of the hole band (i.e., the edge −1v,
E  of the range 

 
+− ,1v1v,

; EE , 'v1v,
EE 

− ) is located inside the conduction band, at the distance τ2/  from the Fermi level, 

τEE
F

2/
'v

+= . Therefore, intrinsic bilayer graphene is a semimetal also whose conduction and valence 

bands are overlapped by magnitude τ/ . Now based on the band structure presented in Figure 2b electron 

conductivity 
n

  is calculated. According to Boltzmann's theory, one valley electron dc conductivity of a bilayer 

graphene can be represented by the following relation (taking into account the spin) 



Volume 1 Issue 2|2023| 7 Universal Journal of Carbon Research 





−=

'

0

2

2

)(

cE

n
dE

df
EdE
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, (18) 

where 2/
'

−=
Fc

EE . 

At temperature KT 0=  from Eq.(18) heT
nn

/)0(
2

min,
==   is obtained. In a similar way for the 

hole minimal conductivity of a one valley (taking into account the spin) he
p

/
2

min,
=  is obtained. Therefore, 

for the minimal conductivity of intrinsic bilayer graphene (taking into account spin and two valleys) one has 

he /4
2

min
= . 

 

3. Results and Discussion  
 

Minimal conductivity and other important transport or electronic properties of a crystal are primarily related 

to the energy spectrum. According to the above-presented approach, if one ignores uncertainties quantum effects, 

then conduction and valence bands of a single and bilayer graphene are separated by forbidden range, 0
g

E , 

see Figure 1a and 2a, 1,v1,
EEE

cg
−= . If one take into account the quasimomentum-position uncertainty only, 

then conduction and valence bands are touching each other, 0=
g

E . If one takes into account the energy-time 

uncertainty as well, then conduction and valence bands are overlapping, 0
g

E . Bands overlap is determined 

by the energy-time uncertainty 


E  and consequently by characteristic time   and the crystal sizes L  (see, Eq. 

(A9)). Single-layer graphene bands overlap is /2 ; bilayer graphene bands overlap is / . So, for example, 

the overlap of single-layer graphene with 200=L  nm is ~ 6 meV. For comparison, note the overlap of three-

dimensional graphite bands is ~ 40 meV (experiment) or about 308   meV (theory). Thus, intrinsic single and 

bilayer graphene crystals are semimetals with a slightly overlap bands. Therefore, graphene must have and has 

the semimetallic behavior. Semimetals are characterized by a weak bands overlap; conductivity is always finite 

and non-zero; in the minimal conductivity electrons as well as holes have contributions.     

Within the above-proposed Boltzmann's quasi-classical E -model, minimal conductivity 
min

  of both 

single layer and bilayer graphene is equal to he /4
2

. It is a universal quantity and does not depend on the 

characteristic time   and the 2D crystal sizes L . Note, first, the expression he /4
2

min
=  is differ from the 

expressions obtained in other theoretical papers by using various calculation methods. Second, which is very 

important, the value 
min

 is in complete agreement with the experimental data and it is not “carrier free” 

conductivity. The proposed theoretical approach predicts that the minimal conductivity of bilayer graphene is not 

different from that of single layer graphene.  

Note that evaluations which were carried out on the base of uncertainty relations usually are considered as 

qualitative. On the other hand, the result he /4
2

min
= , which is also obtained on the base of the uncertainty 

principle, directly coincides with the experimental data. Therefore, it can also be considered as quantitative result. 

In solid state physics, there are cases when results of estimations based on the uncertainties coincide with the 

experimental data and/or with the results of more accurate calculations. Other important conclusion of the 

presented approach is the following. In crystals with parabolic dispersion, quantum expansion of an energy level 

E  is asymmetric with respect to E . In particular, expansion E2  of the lowest energy level of the conduction 

and hole bands are distributed as follows – 1/4 part downward and 3/4 part upward. In the case of linear dispersion, 

the lowest energy level expansion E2  is symmetric – 1/2 part downward and 1/2 part upward. 

 

4. Conclusions 
 

So, the main conclusions of the paper are the following:  

1. in crystals with parabolic dispersion, quantum expansion of an energy level is asymmetric;  

2. in crystals with linear dispersion, quantum expansion of an energy level is symmetric;  

3. single and bilayer intrinsic graphene are semimetals whose bands overlap determined by the 

uncertainties relations and equal /2  and / , respectively; 
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4. minimal conductivity he /4
2

 of single and bilayer intrinsic graphene is determined by 

the degenerated electrons and holes of the overlap range of allowed bands. 
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Appendix 
 

Rate of electron intravalley scattering off iLA phonons is given by [30, 31] 

( ) ( ) ++−−=
+

q,k

qk,k'
k'k

 '

2

22

)()(cos1
2

1 ac
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q
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EEN
A

Dq







  

( ) ( )ac

qq
EEN  −−++

−
)()(1 k'k

qk,k'
. 

(A1) 

Here k  and q  are the electron and phonon wave vectors (boldface type is used to represent vectors), 

respectively,   is the angle between k  and 'k  vectors (scattering angle), 
q

N  is the phonons equilibrium 

distribution function,   is the mass density of graphene, A  is the area of graphene sheet, 
ac

q
  is the iLA 

phonon frequency, 
ac

D  is the acoustic phonon intravalley deformation potential. In expression (A1) the 

Kronecker delta 
qk,k' −

  expresses quasimomentum conservation, and the delta function, energy conservation. 

The relaxation rate 
ac

/1  consists of two components, 
emacabacac ,,

/1/1/1  += . The first term on the 

r.h.s. of the sum (A1) describes the electron scattering with phonon induced absorption (
abac ,

 ). The second term 

on the r.h.s. of the sum (A1) describes the electron scattering with induced and spontaneous emission of phonon 

(
emac ,

 ). At KT 0~  temperatures 0
0→

→
T

q
N  and electron-phonon scattering is due to phonon spontaneous 

emission only. Therefore, at low temperatures from Eq. (A1) for the relaxation rate 
ac

/1  one has  

( ) ( ) −−−==
−

q ,k'

qk,k'
k'k

ac

qac

q

ac

emacac

EE
A

Dq







)()(cos1

2

11 2

22

,

. (A2) 

A simple summation over 'k  is carried out using Kronecker delta 
qk,k' −

 . For further calculations it is taken 

into account that iLA phonons dispersion law of single-layer graphene is linear, q
ac

ac

q
v= , where 

ac
v  is the 

acoustic phonon velocity [13, 30, 32]. Then, from Eq.(A2) one obtains 

( ) ( ) −−−−=
q

qk
Fac

acF

ac

ac

qk
A

qD
v/vcos1

vv2

1 2

2






 
. (A3) 

It is more convenient that the polar coordinate axis is directed along vector k  and the following transition 

from sum to integration is used 

( ) ( )
  






=


→
q

q

max

min

2

0

22
22

q

qBZ

qdqd
A

d
A

. (A4) 

where   is the angle between vectors k  and q .  

Converting the sum (A3) to an integral one have 

( ) ( )  −−−−=

max

min

2

0

22

2
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vv8

1
q

q
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qkqdqd
D






qk


, (A5) 
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where  -function expresses the energy conservation law. Limits of the integration over q  are determined by the 

energy conservation as follows: 0
min

=q , )1/(2
max

bkq += , where 
Fac

b v/v=  . Using the well-known 

property of  -function,  
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)('

)(
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0

x

xx






−
= , (A6) 

Eq.(A5) can be presented as 
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Here 
0

x  is the solution of equation 0(x) =  

Using the following relationship between angles   and   

q-k

qkkkk'
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)(

'
cos

−
==  or 

( )
( )−+

−
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cos2

cos
cos

222

22

2

kqqkk

kqk
, 

integrations in Eq.(A7) is curried out first over   ( -integration) and then over q .  As result, taking into 

account 1v/vb =
Fac

 inequality (
4

102v 
ac

 m/s, 
6

10v 
F

 m/s [13, 30, 32]) the following 

expression for low-temperature 
ac

  is obtained 
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ED

vv15

41
33
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= . (A8) 

This relation characterizes basic peculiarities of low-temperature electron-iLA phonon scattering rate in 

single-layer graphene. Thus, in the low-energy range the electron total scattering rate can be presented as 
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