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Abstract: Increasing demand for Engineered Nanomaterial (ENMs) that have been widely applied in plant 

systems, for the improvement of quality, development, growth, nutritive value, and gene preservation. The uptake, 

translocation, biotransformation, and the associated perils of the application of Nanoparticles in crops demand a 

much deeper understanding of the biochemical, physiological, and molecular mechanisms of the florae concerning 

nanoparticles (NPs). Interaction between different plant parts and NPs resulted in various changes in physiology, 

morphology, and genotoxicity, indicating positive as well as negative feedback by (Nanoparticles) NPs over the 

various mechanisms of the plants and their species. With the ultimate goal of enhancing plant defence and/or 

stimulating plant growth and development and, eventually, crop output, NPs may create new and safer options for 

the smart delivery of biomolecules and novel tactics in plant genetic engineering. This study provides an overview 

of the state-of-the-art knowledge and research directions for plant-nanoparticle integrations. 

Keywords: engineered nanoparticles; nanobiotechnology; nanomaterial; nanosciences; physiological response; 

plant biotechnology

1. Introduction

Nanobiotechnology is emerging as a promising tool in the frontier of science. As the name suggests, it is a

hybrid discipline involving the synergy of Nanosciences and biotechnology equivalently [1]. It is an efficient 

multifunctional, modular technology with diverse functionalities involving a plethora of disciplines [2]. Compared 

to bulk particles, nanoparticles (NPs) are more efficient because of their Nano dimension approach (1–100 nm) at 

the molecular level [3]. It can penetrate the matter at its fundamental level and provides tremendous efficiency 

due to its large surface area, high adsorption capacity, extraordinary optical and electrical properties, easy 

functionalization, high stability, and presence of active sites at the surface [4]. With the advancement in 

technology, this revolutionary science has gained significant importance owing to its profound application in 

diverse fields of electronic communication, food packaging, healthcare, biomedical, biomarkers, and agriculture 

[5,6]. 

Its breathtaking potential in the agriculture sector has substantiated a noteworthy impact, in fulfilling the 

demands of an ever-growing population and curbing the scarcity of food throughout the world. Nanoparticles have 

found their prospective in agriculture through their pivotal role in plants [7]. However, their activity differs 

according to the type of plant and properties (charge, size, shape) of NPs shown in Figure 1. They may be 

distinguished as natural, engineered, or incidental Nanoparticles (NPs) based on their origin. Amid, engineered 

nanoscale materials (ENMs) have received considerable attention due to their wide usage in various scientific 
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fields impacting the socio-economy [8]. Engineered NMs are further classified as a) Inorganic NPs from metal or 

metal oxides as silver nanoparticles (Ag-NPs), Gold nanoparticles (AuNPs), Titanium nanoparticles (TiO2), Zero 

Valent Iron, b) Carbon NPs such as carbon annotates, fullerenes c) Nanocomposites (the combination of NPs) d) 

Dendrimers (a network of nanopolymers) [9]. The insertion of these NPs plays an important role in the 

physiological and biochemical regulations of plants by enhancing their productivity through regulation of growth 

rate, nutrient management, increased disease resistance, and genetic improvement. Various studies found the role 

of Zinc oxide nanoparticles (ZnO-NPs) as a plant growth enhancer in cucumbers [10], soybean [11], and peanut 

[12]. Moreover, the inclusion of these nanoscale materials in the plants provides self-regulated, target-oriented 

release of biomolecules such as proteins, and nucleotides to specific required sites [13] found the involvement of 

Ag-NPs in the activation of gene expression in hormone signaling pathways and cell proliferation metabolism in 

Arabidopsis thaliana L. They are also found to play an important role in disease resistance and defence mechanism 

in plants, which owe them the capacity to remain healthy. In certain plants, these nanoparticles (NPs) are found 

to regulate the requisite release of fertilizers and pesticides while in some it is found to replace them by developing 

pathogen-specific resistance realized by the activation of antioxidant machinery in plants by metallic ENMs [14]. 

ENMs are also found to eradicate microorganisms hampering the growth of a plant in tissue culture media. 

In the leaps and bounds of its beneficial progression, this technology has also been observed to have 

negatively impacted nature and its constituents as plants, soil, and human health. In Phoenix dactylifera L., ZnO-

NPs were reported to affect the carbon and nitrogen cycle in plants by killing their associated fixing soil 

microorganisms [2]. Their excessive concentration, accumulation, and transfer within the food chain are also 

known to be influential on the physiological and biochemical responses adversely [15]. In asparagus lettuce 

(Lactuca sativa L. var. angustana), 500 mg L−1 concentration of CeO2 NPs was reported to inhibit root growth 

and cell membrane damage due to the induction of lipid peroxidation [16]. Similarly, Rico et al. [17] and 

Majumdar et al. [18] reported the effect of NPs on the quality of seeds of wheat and common beans respectively. 

Figure 1. Different types of Nanoparticles in plants and their shapes 

A considerate study on the interaction of NPs with air, soil, and plant systems is urgently needed to 

understand their positive and negative effects [19]. Therefore, possible research on accumulation, absorption, and 

translocation of NPs from soil to root (lateral roots, cortex, root tips) and shoots (epidermis, bark, stigma), 

rhizosphere, shoot, leaves (stomata, epidermis) in different plants, their complex molecules and secondary 

metabolites is to be addressed [20]. Various authors have also evident the role of their shape, size, and properties 

influencing their rate and pathway of transport and have also inferred the occurrence of bio transformations in 

NPs during this process [21]. In rice plants, Copper nanoparticles (Cu-NPs) were observed to produce variant Cu 

species after interaction with various biomolecules in different parts of the plant [22]. In roots, Cu existed as Cu-
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NPs, while in leaves it transformed to exist as Cu-citrate, Cu2O, and Cu-cysteine in similar proportion [23]. Hence 

forth, dynamic research is prevailing in finding models that can study the kinetics of various pathways involved 

in the translocation of NPs and their association in plants [24]. NPs can improve plant growth and development, 

through their use in herbicides, nano pesticides, and nano-fertilizers that can efficiently release their content in 

requisite amounts to target plant cellular organelles [25]. 

Plants' growth and development depend on the number of nutrients absorbed and the prevailing external 

environmental conditions. The addition of NPs to these plants can cause significant positive or negative changes 

in their physiological and biochemical activities [26]. Beneficially, these NPs can cause enhancement of growth 

rate and germination in plants which results in the development of healthy leaves, early flowering, an increase in 

root and shoot length, and many more. Detrimentally, NPs toxicity results in varying anatomical and genetic 

changes in plants such as the production of reactive oxygen species (ROS), degradation of seed quality, and 

various indirect side effects as well [27]. The other characteristics of NPs such as their concentration and size also 

help in studying their positive and negative impacts. This review gives an idea comprehensive review of studies 

involving the impact of various metal NPs on the growth of plants and depicts the advantages and disadvantages 

associated with NPs over plant development and growth. 

2. Effects of Nanoparticles on Plants

2.1 Effects of Iron Nanoparticles (Fe-NPs) 

Plant growth is fundamentally a natural process and is significantly connected with external environmental 

conditions. It gets impacted positively and negatively both ways depending upon the environment, a plant living 

in. The very first factor which plays a vital role is the availability of nutrients in the soil. Plants rooted in soil rich 

in nutrient values feed and grow healthily. On the contrary, soil having very low nutrients or polluted with 

unwanted metallic/nonmetallic particles potentially force the plants into malnutrition and lead to decay eventually. 

Recently a plethora of research has been conducted to study the relationship between NPs used and cultivated 

crops. Agathokleous et al. [28] detailed studies around Ferric Oxide nanoparticles (Fe3O4-NPs) have revealed their 

positive impact on plant germination, growth, and dry biomass along with chlorophyll amount enrichment in 

Triticum aestivum L. It enhances the enzyme activity in hydroponic cultivation within 5 days [14]. Moreover, 

facts confirmed no adverse impact on existing chlorophyll quantity and also plant growth. For example, in 

wheatgrass, no lipid peroxidation, no alteration of oxide radicals, and no additional H2O2 accumulation occurred 

[14]. Furthermore, exposure resulted in augmenting chlorophyll content in Quercus macdougallii L. [29]. 

The introduction of higher fractions of Fe3O4-NPs led to brown spots on leaves. Excess exposure generates 

oxidative stress, affects photosynthesis, and reduces the metabolic process. To get around this, NPs are given a 

coating that offers them a broad adsorption surface and biocompatible qualities. For instance, the presence of 

carbon-coated Fe3O4 at certain concentrations within particular cells and in extracellular space reduces the 

concerns for plant tissues and the number of chemicals released into the environment in the Cucurbita pepo L. 

(pumpkin plant). Magnetic means were deployed on various parts of the beans plant such as dried roots, shoots, 

and leaves to know the projected number of Fe3O4-NPs and discovered the hike in count 2 to 3 folds. This 

measurement confirmed zero levels of toxicity as well [30]. Empirical studies and explorations concerning Fe2O3-

NPs postulated some dose-related artifacts and stated the impact of Fe-NPs on plants as per the concentration 

injected. For example, under hydroponic conditions, 20 mg L−1 of Fe NPs for corn plants promoted root extension, 

whereas 50 and 100 mg L−1 of Fe NPs adversely reduced the length of the root [31]. The process of elongation of 

the root is catalyzed by inducing OH● radical which results in the induced cell wall loosening using nano zero-

valent iron Nanoparticle (NZVI)) [32]. On the toxicity front, NZVI gets diluted within 2 to 4 weeks [33]. 

Comparative evaluation of NZVI and Fe2O3-NPs on 'the root hydraulic conductivity of tomato was conducted in 

the hydroponic experiment by relating the decline in root water uptake with the expected blocking ways in root 

nutrient uptake by each of them mentioned and magically found that with 100 mg L−1 Fe2O3 NPs the root hydraulic 

conductivity gained is 40% resulting Mo and Zn reduction in shoots with NZVI was found to be less harmful [34]. 

A study of the response of transgenic and conventional rice to γ-Fe2O3 NPs has shown that transgenic rice 

showcased a higher degree of superoxide dismutase (SOD) and peroxidase (POD) activities than that conventional 

or non-transgenic rice [35]. The ability to take the plants up using fluorescence-labelled γ-Fe2O3 NPs was 

successfully analyzed through watermelon plants [36]. These NPs flow from root to cells hitting the epidermis 

first followed by the endodermis route. Suitable doses in the appropriate concentration expel iron deficiency 

chlorosis and strengthen plant growth [37]. The postulated facts about Fe, Zn, Zn, Cu, and Fe oxide NPs on mung 

bean seedling growth were given by Dhoke et al. [38]. NPs mobility of such metal and its oxides are controlled 

by symbiotic microenvironments. Arbuscular mycorrhizal fungi help to amplify the metal resistance to exposed 

roots to a greater extent [39]. The findings of these authors led to the result that various Fe NPs on application to 
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root zones activate adverse effects although Fe NPs are considered to be harmless. Lethal impacts were observed 

at higher concentrations (1000 mg kg−1) indicating that abnormal plant development and biomass were the results 

of higher concentrations (above 200 mg L−1) in NZVI and broadleaf cattail along with hybrid poplar [40]. Iron 

NPs are effective in inducing antioxidant properties and aid in the treatment of chlorosis. Henceforth, the usage 

of iron NPs at optimum concentration ought to be applied for exploiting the benefits shown in Table1.The methods 

section is how the study was conducted. Describe in this section any steps or procedures taken to achieve your 

research goals, including experimental design and data analysis. For the statistical analysis, all details related to 

the statistical tests are important. These details include preliminary analysis, study sample size, the type of data 

(mean, median, standard deviation, standards error, and confidence intervals), normalization of your data, 

statistical methods used, and information for the statistical software program (PASS 2022, NCSS statistical 

software, Kaysville, UT, USA). 

Table 1. Effect of iron nanoparticles on plant growth. 

NPs Size (nm) Plant Concentration Effect References 

Fe-0 54 ± 1 Arabidopsis thaliana 0.5 g kg−1 Increased leaf area [41] 

Fe-0 30 ± 2 Arabidopsis thaliana 500 mg kg−1 Increased concentrations of 

phosphorus, total biomass, and 

carbohydrates like glucose, 

sucrose, and starch 

[42] 

γ-Fe2O3 180 Soybean (Glycine 

max) 

500 or 1000 ppm Increased shoot weight, stomatal 

conductance, intercellular CO2 

concentration, net photosynthetic 

rate, and transpiration rate 

[43] 

Fe-0 33.8 ± 3.59 

nm 

Soybean (Glycine 

max) 
20 mg L−1 Increased seedling growth [43] 

Fe2O3 Evening primrose 

(Oenothera biennis) 
0.2 g L−1 Stimulated germination and 

seedling growth 

[44] 

Fe2O3 40 nm Lemon balm 

(Melissa officinalis) 

5, 10, 20, 30, 

and 40 μM 

Relief from oxidative stress caused 

by drought-related stress, greater 

essential oil content. 

[45] 

Fe2O3 20–40 nm Wheat (Triticum 

aestivum cv. 

Cumhuriyet-75) 

500 mg L−1 Increased root length, plant height, 

biomass growth, and chlorophyll 

content 

[46] 

Fe-0 35–45 nm Sunflower 

(Helianthus annuus) 

1 or 2% Alleviation from hexavalent 

chromium stress, recovered growth 

[47] 

Fe3O4 6.85 ± 1.70 

nm 

Wheat (Triticum 

aestivum) 
2000 mg L−1 Recovered growth of seedlings 

exposed to heavy metals 

[48] 

Fe2O3 40–100 nm Tobacco (Nicotiana 

benthamiana) 
50 mg L−1 Increased biomass accumulation [49] 

FeS2 600–700 nm Spinach (Spinacia 

oleracea) 

80 mg mL−1 Bigger leaves, faster biomass 

growth, and more calcium, 

manganese, and zinc in the leaves. 

[50] 

2.2 Impact of Cobalt Nanoparticles 

Cobalt is an essential micronutrient required for nitrogen fixation in legumes and other plant growth. It exists 

as a part of vitamin B12 and is found in an ionic form in plants. The study reveals that cobalt activates different 

enzymatic activities involved in the process of glycolysis, and oxidizing process, and helps in the transformation 

of pyruvic acid. Thereupon, the investigation of cobalt NPs' influence on plant growth and development was 

studied. López-Lopez- Moreno et al. [51] reported the effect of cobalt ferrite (CoFe2O4) NPs on hydroponically 

grown tomato plants. Exposure of CoFe2O4-NPs up to 1000 ppm on tomato plants has no toxic effects but the 

catalase activity was found to decrease in the leaves and roots of a tomato plant. Because of the inability to pass 

through the root system and seed coat, CoFe2O4-NPs show the insignificant result in germination. On the other 

hand, Faisal et al. [52] reported that treatment of eggplant seeds with Co3O4-NPs (1 mg mL−1) resulted in a 

decrement in the germination of seeds, damaged Deoxyribonucleic acid (DNA) and mitochondria resulting in 

oxidative stress, thus causing cell death. Based on these studies, it can be determined that Co-NPs have been 

affected variably based on their chemical nature. 
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2.3 Impacts of Cerium Oxide Nanoparticles (CeO2-NPs) 

In agriculture, nano-fertilizers are very promising for growth, development, and production but the supply 

of nano-fertilizers is very limited [53]. Rico et al. [54] demonstrated that soil properties play a crucial role in the 

distribution of CeO2 NPs and successive bioavailability of nano-formulations or nano fertilizers is provided to 

radish tubes. Morales et al. [55] stated that the applications of CeO2-NPs can transform the nutritional value of 

coriander plants. In cucumber plants, cerium oxide-based Nano-fertilizers (CeO2-NPs) analyzed its significant 

uptake, delivery, and biotransformation by Zhang et al. [56] & Rui et al. [57]. Wang et al. [58] found that extended 

root hairs formed during second-generation sapling were a result of cured seeds. Rico et al. [59] found some 

variations in the vital elements and some other nutritive ingredients in the wheat grains during the cultivation of 

wheat. Corral-Diaz et al. [60] detected that the application of CeO2 -NPs (0–500 mg kg−1) in soil resulted in 

retardness of radish seeds, but Cui et al. [16] found that the application of CeO2-NPs at a concentration of 500 mg 

L−1 or above may induce lipid peroxidation during asparagus lettuce cultured in an agar medium. During radish 

farming, Zhang et al. [61] significantly analyzed CeO2-NPs concentration with soil properties. Rico et al. [54] 

stated that in barley CeO2-NPs improved plant biomass. The application of CeO2-NPs and huge CeO2 particles 

documented different responses of rape mustard plants [62]. Some amounts of CeO2-NPs (0.1–1 mg L−1) has been 

observed to have accumulated in the leaves, shoots, and fruits of tomato plants [63]. 

The researchers discovered about plant responses to CeO2 depend on plant growth stages as well as the 

particle size of the NPs Ma et al. [62] Table 2 illustrates different particle sizes of the NPs CeO2, uptake, and 

translocation after coming in contact with the different plant root systems. Ma et al. [62] reported important 

alterations in the pore size of roots and root hairs of hydroponic cucumber plants. 

Barrios et al. [64] discovered from their research that vital components present in the tomato plant were 

transformed by CeO2-NPs. Interactions between CeO2-NPs and biochar influenced CeO2 accumulation in plants 

[65]. The sunflower (Helianthus annuus L.) was exposed to CeO2-NPs and its physiological and biochemical 

responses were investigated [66]. Differences in the physical and chemical interactivity among plant roots and 

CeO2 NPs were explained by Ma et al. [62]. Interactions among mesquite, (a desert plant) and CeO2 NPs with a 

nutrient suspension (500–4000 mg L−1) of CeO2-NPs utilizing the plantlets grown for 15 days under hydroponic 

conditions.  

The application of CeO2-NPs above 2000 mg L−1 concentration reported an increment of ascorbate-

peroxidase (APOX) activity in the root system. The cortex and epidermis of mesquite plant roots absorb CeO2-

NPs on their uptake by the plant [67]. Exposure of canola plants (Brassica napus L.) to CeO2-NPs, brought about 

a change in canola plant growth and its physiology [68]. The anti-oxidative stress enzyme activities and 

macromolecule composition in rice seedlings were affected by the application of CeO2-NPs [17]. The application 

of CeO2-NPs to tomato plants with comparatively lower concentrations (10 mg L−1) influenced seed quality and 

second-generation sapling growth. The trans-generational effect has also been studied by [58].  

Table 2. Uptake and translocation of CeO2 nanoparticles (NPs) after contact with the diverse plant's root system. 

Particle Size (nm) Plant Species References 

~4 Wheat (Triticum aestivum L.) [69] 

231 Wheat (Triticum aestivum L.) [70] 

~10 Soyabean (Glycine max L.) [71] 

8, 7, 37 Maize (Zea mays L.), Cucumber (Cucumis sativus L.), Alfalfa (Medicago 

sativa L.), Tomato (Lycopersicon esculentum L.) 

[72] 

8 Wheat (Triticum aestivum L.) [73] 

8, 10 Soybean (Glycine max L.) [74] 

2.4 Impacts of Copper Nanoparticles (Cu-NPs) 

It is essential to employ copper and its compounds as NPs in plant and agricultural systems to increase 

production and reduce environmental toxicity. The Cu-NPs-treated wheat shoot was studied by Dimkpa et al. [75]. 

The organ, tissue, and cellular levels of organ, tissue, and cell biotransformation were observed to be limited, as 

were the potential translocation routes for Cu-NPs [75]. According to Zhao et al. [76], the application of Cu-NPs 

can cause an increase or reduction in the content of sugars, organic acids, amino acids, and fatty acids in plants. 

The exogenous gene expression in transgenic crops, especially cotton plants of the gene that codes for Bacillus 

thuringiensis (Bt) toxin protein in leaves and roots is enhanced due to the low concentration of Cu-NPs [77]. 

Bt cotton has benefited from the use of Cu-NPs because they provide insect resistance [78]. The cucumber 

plant's resistance and detoxifying mechanisms were examined under Cu-NPs-induced stress. Cu-NP 

concentrations of 10 mg L−1 and 20 mg L−1 caused significant metabolic alterations in cucumber roots and leaves. 
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Gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H-NMR) 

spectroscopy were used in this investigation [78]. The fusion of different plants and different NPs in environmental 

management has grabbed the focus of several researchers since some NPs exhibit a significant role in plant seed 

germination and plant growth. Plenty of literature on the use of NPs has given great outcomes against pathogens 

yet the actual ground-level applications in agricultural fields are in an exploratory stage. Table 3 shows the effects 

of NPs on plant growth and development. 

Table 3. Effects of nanoparticles on plant growth and development. 

NPs Plant Species Effects on Plants References 

CeO2 Soybean (Glycine max L.) Nano CeO2 effects on the biomass of leaves [79] 

CeO2 Wheat (Triticum aestivum L.) Nano CeO2extends the harvest period of 

Triticum aestivum L. years to a specific 

degree 

[54] 

CeO2 Basil (Ocimum basilicum L.) Effect on the fresh weight  [80] 

CeO2 Tomato (Lycopersicon esculentum L.) Stimulated growth of plants and maturity of 

fruit at a lower level 

[31] 

CeO2 Arabidopsis (Arabis thaliana L.) Declined chlorophyll content at a higher level [81] 

CeO2 Cucumber (Cucumis sativus L.) No undesirable effect over the entire life 

cycle of a plant 

[82] 

Au Mustard greens (Brassica juncea L.) Increased rate of germination (with 25 ppm 

AuNPs) and better total growth profile (at 10 

ppm Au-NPs) 

[83] 

MgO Radish (Raphanus sativus L.) Plants growth is enhanced but also increases 

the uptake of Pb in plants resulting in Pb 

toxicity 

[84] 

NHAP Ryegrass (Lolium perenne) Plant biomass increased and soil pH while 

decreased Pb 

[85] 

Au Arabidopsis (Arabis thaliana L.) Retarded length of the root [86] 

SiO2 Rice (Oryza sativa L.) Enhanced seed germination and sapling 

growth 

[87] 

2.5 Impacts of Gold Nanoparticles (Au-NPs) 

The absorption, translocation, and dispersion of gold nanoparticles(Au-NPs) depend on the NPs' surface 

charge and differ for different plant species. In Arabidopsis thaliana L., Au-NPs demonstrated a substantial 

function in seed germination and affected the amounts of mi-RNA expression in plant development, which 

regulates a variety of morphological, physiological, and metabolic processes [88]. In their analysis of NP 

translocation and uptake, Koelmel et al. [89] found that rice crops had been exposed to Au-NPs with a core 

diameter of around 2 nm.  

Arora et al. [83] examined Au-NPs application in mustard plants through foliar spray and found significant 

growth and seed yield in mustard. Zhu et al. [90] suggested that the application of Au-NPs in mustard greens 

enhances plant growth and yield. The translocation and uptake of Au-NPs with a mean size of 6–10 nm, in 

pumpkin, radish, rice, and perennial ryegrass were studied by Zhu et al. [90]. He observed that positively charged 

Au-NPs and negatively charged Au-NPs translocated across the roots and shoots of the plant respectively. 

In a study carried out on the rice plants, it was investigated that the bioaccumulation of Au-NPs in the tissues 

of root and shoot was reliant on the surface charge at a certain concentration done by the treatment and also on 

the exposure period which was detected with the help of laser-ablation inductively- coupled-plasma mass 

spectrometry (LA-ICP-MS) [89]. Zhai et al. [91] researched the translocation and uptake of gold nanoparticles 

across the roots, leafy cells, and cytoplasm of woody poplar (Liriodendron tulipifera L.). The uptake and 

translocation of the Au-NPs to the leaves of the plant Arabidopsis via roots [92]. 

In a study done on Arabidopsis, it was found that the leaves performed like photochemical mediators by 

absorbing light energy and raising the surface temperature [92]. The Au-NPs were consumed and translocated by 

the tomato plant without changing their properties in a study done by Dan et al. [93]. The effect of dose-dependent 

application of Au-NPs on Arabidopsis thaliana L. seedlings was observed on the length of the root and a reported 

lower dose of Au-NPs to impact root growth [94]. The uptake and translocation of the Au-NPs in the roots and 

subsequent accumulation in the plant tissues were analyzed by analyzing the materialistic properties [95]. On the 

application of Au-NPs (100 mg L−1) to the Arabidopsis thaliana (L.) which was consumed by it in ionic form, the 
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physiological and genetic responses were studied in the root tissues [86]. Citrate-stabilized Au-NPs (diameter 

100–400nm) enhanced the biochemical and physiological stress conditions in Brassica juncea L. seedlings [96]. 

Feichtmeier et al. [97] reported the development in seeds of barley on globular Au-NPs application with a diameter 

of 2–19 nm.  When citrate-coated Au-NPs were applied to onion, it resulted in various aberrations in the 

chromosome of root tips [98]. 

2.6 Impact of Zinc Oxide Nanoparticles (ZnO-NPs) 

ENMs are the major demands of today's era in this respect ZnO-NPs are one of the most demanded ENMs. 

Due to its wide applications in different industries (cosmetics, paints, medicine), and biomedical and drug carriers, 

it becomes very compulsory for researchers to identify its impact on plant growth and development. Enhancement 

in plant growth and development is reported in cucumber [10], green peas [99], soybean [11], and maize seed 

[100] when treated with ZnO-NPs. This section deals with such research that explains the impact of ZnO-NPs. 

Shahhoseini et al. [101] in an experimental investigation tried to observe the impact of ZnO-NPs and ZnSO4 

suspension on peanut plants grown in a pod. The experiment varied from much lower concentrations to higher 

concentrations up to 1000 ppm with an average size of ~25 nm of ZnO-NPs and ZnSO4 chelates. It was found that 

treatment with high concentration NPs enhanced the rate of seed germination, seedling vigor, increase in 

chlorophyll content of leaf, and early flowering was also recorded. Similarly, ZnO-NPs inductive effect proves in 

increasing the rate of root and shoot growth with a 34% increment in growth per pod in comparison to chelated 

ZnSO4 treated pods. In a similar experiment with a lower concentration of ZnO-NPs and ZnSO4 suspension, the 

highest peanut yield is found at 29.5% and 26.3% respectively in comparison with the control. In addition, 

Mukherjee et al. [99] studied that ZnO-NP's physiological impact on the soil helps in developing green peas. The 

toxic effects were estimated by breaking down different boundaries, for example, plant development, Zn amassing, 

chlorophyll creation, and movement of stress compounds. An expanded root extension was watched for every 

examined centralization of ZnO-NPs, though it didn't affect the growth of the shoot. In hay (Medicago sativa L.), 

tomato, and cucumber (Cucumis sativus L.), ZnO-NPs and Zn2+ particles had an increased effect [27]. On the 

application of 1600 ppm concentration of ZnO-NPs, the cucumber germination increased by 10%, while tomato 

germination decreased by 20% and horse feed germination by 40%. Various plants respond to different NPs in 

their distinct ways and the species of the plant may be a possible reason behind the various responses to the uptake, 

resistance, as well as toxicity. This examination researched possible biotransformation and featured the 

phytotoxicity and take-up of ZnO-NPs and Zn2+ particles by the plants. Guo et al. [102] developed carboxymethyl 

cellulose (CMC)-based film packaging that was enhanced with zinc oxide nanoparticles and cinnamaldehyde 

(CIN) from plant sources (ZnO-NPs). Investigation of CMC-based films, including pristine CMC, CIN/CMC, 

ZnO-NPs/CMC, and ZnO-NPs/CIN/CMC on physic-mechanical, barrier properties, and antifungal activities were 

examined. The ZnO-NPs incorporated in film produce Nanocomposites of good flexibility, high mechanical 

resistance, and low transparency. The addition of CIN to CMC-based film improved the water barrier capacity 

and antifungal performance improved the water barrier capacity and antifungal performance. In comparison, 

ZnO/CIN/CMC nanocomposite possesses satisfactory mechanical characterizations, extraordinary barrier 

capacity against oxygen and water, and shows excellent anti-Aspergillus niger activity. Additionally, this 

nanocomposite film proved successful in preventing cherry tomato weight loss, maintaining the fruit's firmness, 

and lowering the fruit's overall acid content during storage. According to the study, cherry tomatoes' quality is 

improved by this nanocomposite film packaging by reducing the physiological metabolic activities of fruits 

throughout the postharvest storage period. One of the experiments examined the impact of ZnO-NPs on colored 

rice (Oryza sativa L.). The rice berry plant (Oryza sativa L.) was grown and irrigated for 60 days after which 

plants were exposed to ZnO-NPs. Different doses of NPs (0, 200, 400, and 800 mg L−1) were given to riceberry 

plants. The low concentration of ZnO-NPs shows high enhancement in plant heights, plant weights, 

panicles/clump number, antioxidant enzyme activity, and photosynthetic pigment content as compared to other 

doses and control shown in Table 4. It was also noted that seeds of riceberry show the accumulation of anthocyanin 

content and reported highest with 200 mg L−1 dose. It was suggested that NPs concentrations play a major role in 

the enhancement of riceberry productivity, plant growth, and metabolite in plants. 
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Table 4. Effects of ZnO-NPs on plant growth and physiology. 

Nano-material Crop Species Size Concentration Responses References 

ZnO Coea arabica N.A. 10 mg L−1 Enhanced growth, biomass accumulation, and net photosynthesis [103] 

ZnO Triticum aestivum N.A. 20 mg L−1 Increased grain yield and biomass accumulation [19] 

ZnO Cyamopsis 

tetragonoloba 

N.A. 10 mg L−1 Improved plant growth, biomass accumulation, and nutrient content [104] 

ZnO Nicotiana tabacum N.A. 0.2 µM to 1 µM Positively affected growth physiology, increased metabolites, 

enzymatic activities, and anatomical properties of plants 

[105] 

ZnO NPs Wheat (Triticum aestivum) 20 ± 5 nm 2 mg L−1 Increased zinc content in grains, zinc present in form of zinc phosphate [106] 

ZnO NPs Saffron (Crocus sativus) Size < 30 nm 2 mg L−1 Increased yield of flowers [107] 

ZnO NPs Sorghum (Sorghum bicolor var. 251) Size of 18 nm 6 mg L−1 Increased grain yield, increased translocation of nitrogen, potassium, 

and zinc into grains 

[108] 

ZnO NPs Lemon balm (Melissa officinalis) 

seedlings 

10–30 nm 5 or 15 mg L−1 More developed lateral roots increased leaf fresh mass. [109] 

ZnO-NPs Mung bean (Vigna radiata) 22.4 ± 1.8 nm 10 or 25 mg L−1 Longer stems and larger root volume [110] 

ZnO-NPs Wheat (Triticum aestivum) 20–30 nm 25, 50, 75, 100 mg 

L−1 

Increased growth and yield in soil contaminated with aged cadmium [111] 

ZnO-NPs Foxtail millet (Setaria italica) Shape, size < 20 

nm spherical shape 
2.6 mg L−1 Increased oil and nitrogen content in grains [112] 

ZnO-NPs, Lupine (Lupinus termis) 21.3 nm 20, 40 mg L−1 In normal conditions, mitigated the negative effect of 150 mM NaCl [113] 

ZnO-NPs Winter wheat (Triticum aestivum var. 

Dyna-Gro 9522) 

18 nm 1.7, 3.5 mg L−1 Modulation of drought stress [114] 

Not Applicable: N.A. 
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2.7 Impact of Silver Nanoparticles (Ag-NPs) 

Silver is one of the most common metals due to its wide use in different industrial applications, and 

antibacterial and medicinal values. The broad use of silver increases the risk of humans, plants, animals, and the 

environment getting exposed. Several researchers have studied the uptake, phytotoxic, and translocation effects 

of Ag-NPs on plants. Hence, this section deals with the study of the effect of Ag-NPs on plants.  

Shams et al. [115] utilized Ag-NPs of 500–3000 ppm size to accelerate seedling growth and seed germination 

of Boswellia ovalifoliolata L. Soil-cultivated cucumber experienced a remarkable impact on agronomic traits over 

the application of Ag-NPs foliar spray, resulting in an enhanced yield of fruits and weight to 26% in comparison 

to control. Radish, lettuce, and grain (Hordeum vulgare L.) obtained from the nursery were used as a reference 

for studying the effect of Ag-NPs (10 nm) on root stretching under the soil and hydroponic conditions [116]. Root 

extension showed positive results in grains with low Ag-NPs concentration under hydroponic conditions, while a 

critical decrease in the length of the root was observed on the application of elevated concentration levels of Ag-

NPs.  In lettuce, a discount in the rooting period turned discovered, and for radish, no sizeable variant had been 

mentioned on remedy. No poor consequences had been visible on remedy with Ag-NPs for the foundation period 

of the entire 3 flora uncovered to the soil. The boom parameters of not unusual place bean (Phaseolus vulgaris L.) 

and maize (Zea mays L.) had been studied with ninety-eight Nair [117] exceptional concentrations of Ag-NPs 

wherein more desirable boom turned into discovered at low concentrations and inhibitory consequences with 

better concentrations of NPs [118]. The phytotoxicity of Ag-NPs (29 nm) over cucumber (Curcumin sativus L.) 

and lettuce (Lactuca sativa L.) was concentrated with seed germination tests, and a diminished impact on the 

germination file was accounted for cucumber seeds [119]. The germination data for lettuce seeds appeared to be 

practically identical to the controls. The grain showed positive feedback in root extension with low Ag-NPs 

concentration under hydroponics conditions, while high Ag-NPs concentration showed a decline in the length of 

the root.  For lettuce, a discount in the rooting period turned into discovered, and for radish, no sizeable variant 

had been mentioned on remedy. No poor consequences had been visible on remedy with Ag-NPs for the 

foundation period of the entire 3 flora uncovered to the soil. The main parameters of usual bean (Phaseolus 

vulgaris L.) and maize (Zea mays L.) have been studied with ninety-eight. Nair [117] exceptional concentrations 

of Ag-NPs wherein more desirable boom turned into discovered at low concentrations and inhibitory 

consequences with better concentrations of NPs [118]. Increased chlorophyll content, root, and shoot period were 

seen to be a cure with 60 ppm Ag-NPs and then declined boom criterion and content of chlorophyll for better 

concentrations. Syu et al. [13] studied the effect of distinct morphological shapes (triangular, spherical, and 

decahedral) and sizes (8 to 47 nm) 

Ag-NPs on A. thaliana resulted in increased root growth. Vannini et al. [120] investigated the phytotoxicity 

and genotoxicity of Ag-NPs over germinating seedlings of wheat. Variations in morphology in a cell of the root 

tip and reduced growth of seedlings were seen as a result of higher Ag-NPs concentration. The result also revealed 

that the toxicity of Ag-NPs is due to the release of Ag ions from Ag-NPs. No sign of DNA polymorphism was 

reported with the application of Ag-NPs. It was seen that the proteins that controlled primary metabolism and 

defence mechanism showed variation in their expression. The effect of Ag-NPs on cellular and morphological 

modifications of A. thaliana. It was concluded that at a cellular level the signaling of ROS and Ca2+ was stimulated 

by Ag-NPs with much more complex physiological alterations. Tripathi et al. [121] studied the effect of Ag-NPs 

and Nitric oxide on green peas and found that Ag-NPs caused negative effects on the development of crops. 

Kumari et al. [122] studied the impact of different Ag-NPs concentrations on seed germination, and shoot and 

root elongation of mung beans. The results indicated that on elevating the Ag-NPs concentration (100 mg L−1) 

besides the declination in elongation of shoot and root, there was a decline in seed germination. The impact of 

Ag-NPs on the germination rate of ryegrass, barley, and flax (Linum usitatissimum L.) had been studied with three 

low concentrations ranging from 1 to 100 ppm and sizes between 1 to 20 nm. The result revealed that the different 

sizes of NPs affected different plant species. The inhibitory effect was observed on ryegrass with low 

concentration and small-size nanoparticles. Barely shows the high inhibitory effect with high concentration and 

intermediate size, whereas intermediate size with low concentration showed no inhibitory effect. Flax seeds had 

been on no account suffering from any amounts of Ag-NPs [123]. Since exceptional sorts of plant species behaved 

in a different way to an equal form of NPs of various lengths and awareness, the assessments of germination of 

seeds cannot be entirely relied upon for the evaluation of the environmental effect of Ag-NPs. Di et al. [124] 

researched the size-dependent toxicity of Ag-NPs over Italian ryegrass (Lolium multiflorum L.). It was observed 

that shorter roots, shoots, and less biomass are observed with smaller Ag-NPs as compared to larger Ag-NPs of 

the same concentration. It can be concluded that the total surface area of NPs was affected by their toxicity of 

NPs. The research was further carried out with gum arabic (GA)-coated Ag-NPs of 40 ppm concentration and 

found seedlings with failed root hairs, broken root caps, and vacuolated cortical cells. This happened as a result 
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of reduced auxin transport which affected gravitropism in plant growth. In further study effect of Ag-NPs on 

chlorophyll, epidermal polyphenol contents, nitrogen balance index photochemical efficiency, and phenylalanine 

ammonia-lyase (PAL) activity in Prosopis juliflora (L.). The Ag-NPs were obtained from leaf extract of Hyptis 

suaveolens (L.) of 22 nm particle size with 29.50 mv and 1.394 ms cm−1 zeta potential and conductivity 

respectively. Four different doses (25, 50, 75, and 100 ppm) of Ag-NPs synthesized on Prosopis juliflora (L.) 

were tested. The result showed a positive impact on phenylalanine ammonia-lyase (PAL) activity and a neutral 

effect on other contents. A high dose (100 ppm) of Ag-NPs was noted with a negative effect on photochemical 

efficiency. It is suggested that future study is needed to reveal the impact of green Ag-NPs in the reduction of 

stress oxidative in plants which was induced due to PAL enzymes which act as exogenous inducers. Various 

researchers are working on identifying the impact (positive and negative) of Ag-NPs on plant growth and 

development are shown in Table 5. However, it is suggested to majorly identify the toxic impact of Ag-NPs on a 

plant at the cellular level. 

Table 5. Effect of Ag-NPs on plant growth, development, and physiology. 

Nanoparticle Size Plant Concentration Effect References 

Ag NPs Size 6–36 nm Rice (Oryza sativa) 20 mg L−1 Increased germination 

rate and faster 

seedling growth 

[125] 

Carbon-coated 

Ag NPs, 

10 nm Populus deltoides × 

nigra) 

1 mg L−1 Increased root and 

stem biomass growth 

[126] 

PEG-coated Ag 

NPs 

Size 5 or 10 

nm; Ag+ ions 

Arabidopsis 

thaliana 

0.01 mg L−1 Increased biomass 

growth 

[126] 

Ag NPs  1 to 50 nm Rice (Oryza sativa) 

callus 

5 and 10 mgL−1 Faster regeneration of 

callus 

[127] 

Ag NPs capped 16.7 nm, 

spherical shape; 

Ag+ ions 

Common bean 

(Phaseolus 

vulgaris) 

(5–60 ppm) Increased biomass 

growth and bean yield 

[128] 

Ag NPs approx. 100 

atoms 

Scots pine (Pinus 

sylvestris) and oak 

(Quercus robur) 

seedlings 

5, 25, and 50 

ppm 

Stimulation of 

ectomycorrhizal 

colonization 

[129,130] 

Ag NPs 100 nm, surface 

area 5.0 m2/g 

Two orchids 

(Lilium cv. Mona 

Lisa and cv. Little 

John) 

100 ppm Increased leaf and 

bulb biomass 

accumulation 

increased flower 

abundance and 

prolonged flowering 

period 

[131] 

2.8 Impacts of Silica Nanoparticles (SiO2-NPs) 

Better growth parameters and seed stability in maize were observed with the use of SiO2-NPs [132]. The 

sustainable farming of maize crops observed that the application of SiO2-NPs at 15 Kg ha−1, in maize significantly 

increased the organic compounds such as proteins, chlorophyll, and phenols especially compared with bulk silica. 

It also enhanced the germination of seeds along with the growth of seedlings [133]. Slomberg and Schoenfisch 

[134] studied that the silica scaffolds turned out to be effective in the consumption and translocation of SiO2-NPs 

(14, 50, and 200 nm) within the root system of Arabidopsis. The application of SiO2-NPs in maize grown under 

hydroponic conditions remarkably increased the dry weight of the plant. Suriyaprabha et al. [135] also reported 

an increase in the degree of organic compounds including phenol, chlorophyll, and proteins in maize with the use 

of SiO2-NPs. Sun et al. [136] applied the SiO2-NPs (mean diameter 20 nm) on seed germination in selected plant 

species. Siddiqui and Al-Whaibi [137] revealed that soil properties and characteristics of seed germination in 

tomato plants were influenced by the treatment with SiO2-NPs. Tripathi et al. [138] discovered that the application 

of SiO2-NPs as pre-addition or bulk SiO2 controlled the degree of oxidative tension and the seedlings of wheat 

were protected from UV-B by shielding photosynthesis. Janmohammadi and Sabaghnia's [139] investigation 

indicated that the application of SiO2-NPs regulates stress caused by the presence of salts and improved the 

germination and seedlings of the lentil. Sunflower and Cucurbita grown under salt stress conditions showed 

increased germination of seeds under the influence of SiO2-NPs. Tripathi et al. [15] In their experiment used SiO2-

NPs, to reduce oxidative stress as well as to the enhancement of the antioxidant defense system. Wang et al. [140] 

found that supplementing the soil with NPs affects the soil as well as the plants; the application of SiO2-NPs in 
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the form of a suspension significantly improved the growth parameters of plants and regulates the soil properties 

shown in Table 3. 

2.9 Effects of Carbon Nanoparticles 

Carbon NPs (CBNs) are a novel class of materials that are being used extensively in biomedical fields 

covering a huge spectrum including the delivery of therapeutics, biomedical imaging, biosensors, tissue 

engineering, and cancer therapy. It has gained great attention and visibility due to its unique chemical and physical 

properties including thermal, mechanical, electrical, optical, and structural diversity. Endowed by such intrinsic 

properties, various CBNs are used in plant growth. The engineered CBNs have proven to hike in germination rate 

with increased water uptake experimented on rice seeds [117] yielding healthier plants when compared with the 

control ones. 

2.9.1 Carbon Nanotubes (CNTs) 

These are CNBs where molecular-scale structures having carbon atoms arranged in cylindrically formed 

layers, held together by the virtue of covalent bonds in a pattern of hexagonal tiling, to form a hollow tube having 

a diameter of the order of hundred nanometers. Three types of CNTs are recognized so far:  

a) Single-walled carbon nanotube (SWCNT)

b) Double-walled carbon nanotubes (DWCNT)

c) Multi-walled carbon nanotubes (MWCNT)

Following the studies, CNTs empower a tomato plant to increase its flower and fruit production by 2 times 

in contrast with the control plants. The phylogenetic analyses established the fact that enhancement in the number 

of CNTs, results in the relative increase of Bacteroidetes and Firmicutes with a decrease in the Proteobacteria and 

Verrucomicrobia [141]. SWCNT is a layer of atoms arranged cylindrically forming a single molecule, having a 

diameter of the order of a nanometer. Its mobility throughout the cell membrane as well as, the cell wall of the 

plant [142] allows the delivery of DNA along with additional particles to keep the plant cells integrated. Fullerenes 

adsorption results in the cell wall and membrane disruption which led to complete inhibition of cell growth. The 

presence of oxidative stress in Arabidopsis and rice protoplasts resulted in the programmed death of cells 

constraining the survival of the cells to be especially dependent on dose [143].  

MWCNT in small doses of 10, 20, and 40 mg L−1 on Brassica juncea L (Indian mustard, Chinese mustard) 

and Phaseolus mungo L. [144] and the dose of 40 μg mL−1 on tomato (Solanum lycopersicum L.) were found 

much more helpful for seed germination than control plants [145]. Its stimulus has been observed at length with 

the germination of seed and elongation of seedling root in Triticum aestivum L. [37]. Henceforth, accelerated 

barley and soya bean seed germination and then nourished the plant without any adverse effect [146]. Water has 

been proven a vital ingredient in channelizing the bulk of protein content for the overall growth and nourishment 

of plants keeping the seed germination so well into consideration [147]. Villagarcia et al. [148] investigated within 

tomatoes that numerous groups, including COOH and polyethylene glycol (PEG) triggered MWCNTs that help 

in the generation of water channel protein-aquaporin (LeAqp1). An improved water delivery system and CNTs 

stimulate growth. Water-soluble CNTs can enhance the water absorbent and holding capacity of roots to positively 

influence the growth of C. arietinum plants [138]. Jiang et al. [149] found in the study over paddy (Oryza sativa 

L.) that application of CNTs (0–100 μg mL−1) to stem and roots enhanced seedling length. However, a dose of 

150 μg mL−1 was found to reduce the activity of the root, along with the length of the root and stem. With the 

positive gains from the MWCNT, it offers a flip side as well as far as seed germination and upbringing of seedlings 

are taken into account. CNTs exposure to a high degree given ultimately damages the plants which highlight the 

criticality of the intensity of the dose used while giving the treatment to the experiments. 

2.9.2 Carbon Nanoparticles (CNPs) 

These are CNPs of pure carbon attributed to increased stability, decreased toxic level, ecologically sound, 

and better conduction. In the interest of plants, it promotes the absorption of micro and macronutrients as well as 

a level of accumulation, hence enhancing the effectiveness of the fertilizer. The water-soluble CNPs can release 

nutrients in a steady regulated manner for enhanced assimilation across a plant, which makes it better than manure 

and fertilizer. For example, Nicotiana tabacum (L.) has showcased increased growth at different stages after its 

treatment (Liang et al. [150] by augmenting nitrogen and potassium content. Modulation in Phytochrome B 

(PhyB), pathways dependent on photoperiod can stimulate early flowering in plants.  
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2.9.3Carbon Nanodots (CNDs) and Fluorescent Carbon Dots (FCDs) 

The fluorescence microscopy analysis reveals the water-soluble CNDs entry into roots, and flow throughout 

the plant leaving its presence in leaves (mesophyll cells) and roots. The wheat (Triticum aestivum L.) plant has 

proven root growth ten times as normal after exposure for ten days with a dose of 150 mg L−1 water-soluble CNDs 

[151]. Lettuce yield can be increased and nitrate level can be decreased with the use of CDs in a small dose (20–

30 mg L−1). It was detected in Vigna radiates L. sprouts with varying concentrations (0.02–0.12 mg mL−1) of CDs, 

which resulted not only in increased biomass and carbohydrate level (increase to about 21.9%) but also elongation 

of root and stem. Further, photosystem activity (RUBISCO and chlorophyll content) can also be increased by 

stepping up the electron transfer level. All kinds of CDs can potentially invoke defense systems of antioxidants 

more in the roots than shoots [152]. CDs are used in plant cell and tissue imaging. 

2.9.4 Carbon Nanohorns (CNHs) 

Just like SWCNT, carbon nanohorns follow the same pattern and are normally called as SWNHs (Single 

Walled Nanohorns). They do exhibit many useful properties such as porosity, electronic behavior, magnetic 

behaviour, sensor behavior, gas storage, etc. The property of soil porosity due to the virtue of the hexagonal 

stacking structure empowers it to have a substantial capacity of micropores and trivial mesoporosity. Hence it has 

also been observed that they enhance terrestrial plant growth [148].On the exposing the cells of Nicotiana 

Tabacum L., to CNHs (25 and 100 μg mL−1) for about 24 h, trivial impacts were studied at 25 μg mL−1, while 

cultured cells at 100 μg mL−1 had a 78% hike in their growth. 

2.9.5 Nanocarbon Sol (NCS) 

NCS has revealed its new dimension and proved to be one of the agents that participate in an effect of synergy 

with fertilizers as they are added to the production process of fertilizers. Crops are exposed or treated with NCS 

to gain enhanced growth. It allows slow percolation of nutrients to the crops stably yielding an increase in 

production by 5 to 18%. It is a good contributor to the nitration inhibition rate. All in all, they are a friend of crops 

and the environment leaving no traces behind after their exhaustion. 

2.9.6 Carbon Nanofibers (CNFs) 

CNFs are micronutrient carriers in plants providing efficient translocation. These are CNFs, vapour grown 

carbon fibers (VGCFs), or vapour grown carbon nanofibers (VGCNFs), cylindrical nanostructures with graphene 

layers arranged as stacked cones, cups, or plates. They are micronutrient carriers in plants providing efficient 

translocation and controlled release of Cu-NPs. Cu-CNFs, ideally engineered NPs can act as carriers for 

micronutrients thus stimulating plant growth. 

3. Advantage and Disadvantage of Nanoparticles

The advantages of using NPs in the plant and their effect on physiology and biochemistry are explained 

shown in Table 6. But a brief view of its toxicity is also needed to regulate their adequate usage. NPs at certain 

concentrations are beneficial to plants but their excess concentration and prolonged exposure are known to cause 

various adverse effects on their diverse functions. 

3.1 Physiological effects 

Physiological characteristics such as pore size, hydraulic conductivity, and cell wall affect the accumulation 

and transport of NPs. Size is an important factor depicting its penetration level thus affecting its metabolic pathway 

[153]. 
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Table 6. Advantages of using nanoparticles in the growth and development of plants. 

NPs Concentration Plant Positive Effect References 

TiO2 100–300 mg kg−1 Soyabean (Glycine max Merr.) Improvement in the photosynthetic rate [154] 

Mn 0.05–1 mg L−1 Mung bean (Vigna radiate L.) Increased nitrogen metabolism [155] 

CeO2 20,40,80,160,320 mg 

L−1 

Cucumber (Cucumis sativus 

L.) 

Catalase activity in the roots was increased [156] 

NZVI 0.5 g/L Soyabean (Glycine max Merr.) Increase germination rate in seeds [119] 

Alginate/ 

chitosan  

1.92 × 1012 nanoparticle 

mL−1 

Wild bean (Phaseolus vulgaris 

L.) 

Increased biological activity was observed in 

plants with NPs as compared to those with 

free plant growth hormone- gibberellic acid. 

[157] 

Fe2O3 500 and 1000 mg L−1 Soyabean (Glycine max Merr.) Increased root elongation and improved 

photosynthetic activity 

[43] 

MWCNTs 50–200 ug mL−1 Tomato (Solanum 

lycopersicum L.) 

Increased number of flowers and fruits and 

height of plants  
[141] 

Magnetic iron 

NP 

100, 200 kg/ha, Wheat (Triticum aestivum L.)  Phosphorus (P) and nitrogen uptake in wheat 

shoots were significantly greater at lower 

concentrations of BMCs (100kg/ha) 

[158] 

Pristine 

MWCNTs 

20 mg L−1 Maize (Zea Mays L.) Enhanced transfer of nutrients and increased 

biomass 
[159] 

Carbon 10–150 mg L−1 Wheat (Triticum aestivum L.) Higher growth rates were observed [160] 

mPEG-PLGA-  - Wheat (Triticum aestivum L.) Enhanced the overall plant growth [161] 

ZnO 10 mg L−1 Pearl millet (Pennisetum 

glaucum L.) 

Enhancement in fresh and dry biomass of 

plant 
[162] 

SiO2 - Tomato (Lycopersicum 

esculentum Mill.) 

Improvement in seed germination was 

observed 
[163] 

Graphene 

oxide 

400 and 800 mg L−1 Broad bean (Vicia faba L.) Enhanced Germination in Plants [164] 

ZnO 

ZVI  

0,10,100, 500 mg L−1 

10, 20, 40, 80, 160 mg 

L−1 

Safflower (Carthamus 

tinctorius L.) 

Rice (Oriza sativa)  

Increased the production of malondialdehyde 

enzyme. 

Seed growth, root, and shoot length are 

enhanced 

[165] 

[166] 

NPs toxicity is reported to affect the germination percentage, biomass, root length, and shoot length in 

soybean, wheat, maize, and barley [167] shown in Figure 2. Wang et al. [33] found reduced chlorophyll content 

and seedling growth in rice plants exposed to NZVI concentration of 500–1000 mg L−1 due to damaged root tissue 

at a higher concentration which in turn affected the Fe absorption and chlorophyll production. Le Van et al. [168] 

conducted a study on conventional and transgenic cotton and found Cu-NPs to have caused toxicity above 200 

mg concentration thus affecting its plant height and root length.  Prolonged exposure of Cu-NPs to Oryza sativa 

(L.) for 7–14 days affected the shoot and root length [22]. Vernay et al. [169] reported the adverse effects of NPs 

on flowering, fruiting, senescence, abscission, and dormancy which affected the overall growth and development 

of plants as shown in Table 6.  

They are also known to reduce hydraulic conductivities and transpiration in Zea mays L. [170]. Ma et al. [40] 

found that Ce NPs reduced chlorophyll assembly by 60–85%. Carbon NPs due to aggregation at the root surface 

reduce the absorption of nutrients, mediate reduced transpiration rate, and photosynthetic process, and reduction 

in stress tolerance genes [171]. Dose-dependent effects of multi-walled carbon NPs were found in Cucurbita pepo 

L. resulting in reduced bud length, seed germination, biomass accumulation, root length, and vitality index. Vittori 

et al. [80] reported adverse effects of 50 mg L−1 concentration of NPs on their average biomass, fresh weight, and 

root elongation. Since the higher concentration and long-time exposure of NPs are known to cause toxic or 

retarded effects on the complete physiology of plants thus affecting their growth and development, their 

penetration into the food chain further enhances their toxicity to higher organisms [80]. An increased amount of 

Au-NPs from 10 to 100 ppm resulted in decreased oxidative load and growth [69]. 

https://www.google.com/search?q=Phaseolus&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEqvTMlRAjMNs9LNDLUss5Ot9JMy83Py0yv184vSE_Myi3Pjk3MSi4sz0zKTE0sy8_OsMjLTM1KLFFBFF7FyBmQkFqfm55QW72BlBACRRiThYgAAAA&sa=X&ved=2ahUKEwi6sfSD3OzqAhXj4nMBHbDbDN8QmxMoATApegQIDhAD
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Figure 2. Advantages and disadvantages of nanoparticles on plant growth. 

3.2 Biochemical Effects 

In certain plants, carbon NPs are known to produce Reactive Oxygen species (ROS) species which induce 

toxicity in plants giving rise to lipid peroxidation, oxidative stress, and DNA damage. A study by Poborilova et 

al. [172] found the generation of ROS and lipid peroxidation in Tobacco BY-2 cells, exposed to Al2O3 NPs. These 

NPs can cause damage to plants indirectly by affecting the antioxidant enzymes of the plant, thus affecting its 

defence mechanism. A decreased trend in catalase (CAT) activity was observed in the root and leaves of Solanum 

lycopersicum (L.) with increasing concentrations of CoFe2O4 NPs from 0–1000 mgL−1 [173]. Oxidative damage 

in rice plants was observed when they were exposed to a CeO NPs concentration of 62.5 and 500 mg L−1 [17]. 

Mukherjee et al. [99] reported oxidative stress when 500ppm of 10nm Zn NPs were exposed to Pisum sativum L. 

Imbalance in auxin and ethylene production was reported in Brassica juncea (L.) exposed to Au-NPs. Arora et al. 

[81] CeO2 NPs were found to affect the developmental activities in Triticum aestivum (L.) by affecting its amino 

acid content resulting in an imbalanced protein level [19]. Toxicity in these biochemical pathways further affects 

the physiological functions of plant and their secondary metabolism Table 7. 

Table 7. Disadvantage of using nanoparticles in the growth and development of plants. 

NPs Dose Plant Negative Effect References 

AgNPs 25, 50, 75, 100 mg 

L−1 

Rice (Oryza sativa L.) Increasing concentration reduced 

aflatoxin levels thus significantly 

affecting plant growth 

[174] 

Ag (Citrate 

coated) 

73.4 mg L−1 Maize (Zea mays L.) Retarded germination [175] 

AgNPs 0.5 and 3 mg L−1 Thale cress (Arabidopsis 

thaliana L.) 

Reduced chlorophyll content due to 

disruption in the thylakoid 

membrane structure. 

[176] 

NZVIs 1000 mg kg−1 Rice (Oryza sativa L.) Negative effect on carotenoids and 

chlorophyll 

[177] 

Si NPs 250,1000 mgL−1 

1000 mgL−1 

Thale cress (Arabidopsis 

thaliana L.) 

Pumpkin (Cucurbita pepo L.) 

Reduced stem length and biomass 

Germination was inhibited 

[135,178] 

CeO2NPs - Wheat(Triticum aestivum L.) The harvest period of ears was 

prolonged to a specific level. 

[54] 
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CeO2 NPs 20, 40, 80, 160, and 

320 mg L−1 

Cucumber (Cucumis sativus 

L.) 

Ascorbate peroxidase activity was 

decreased in the leaves 

[156] 

CuONPs 10,100,500,1000 mg 

L−1 

Raddish (Raphanus sativus L.) The oxidative damage caused to 

DNA decreased root growth. 

[179] 

Al2O3 NPs 0.01–0.1 mg L−1 Tobacco BY-2 cells Reduced oxidoreductase and 

dehydrogenase activity, impairment 

of plasma membrane, and reduced 

cell viability. 

[172] 

Fe2O3 NPs 0.032,0.32,3.2 mg 

kg−1 

Mycorrhizal Clover Reduced biomass [39] 

Ag, CeO2, 

Co, Ni NPs 

- Basil (Ocimum basilicum L.) Affects fresh weight adversely [80] 

Au NPs 48 mg L−1 Tobacco (Nicotiana tobaccum 

L.) 

Necrotic lesions observed [95] 

TiO2 NPs 4000 mg L−1 Tomato (Solanum 

lycopersicum L.) 

Germination was reduced by 20% [173] 

ZnO NPs - Soyabean(Glycine max Merr.) The deleterious effect on the 

biomass of leaves 

[180] 

4. NPs Work in Conjunction with Plants to Remediate Soil Contaminated

with Metal and Metalloid 

Researchers regularly work in the field of interaction behaviour of plants and NPs and found strong 

correlative behaviour in Phytoremediation. Fernández et al. [181] Studies on leguminous plants (Ludwigia 

peploides L. and Limnobium laevigatum L.) found symbiotic relations between symbiotic relationships of Pb 

remediation and high adaptability in harsh climatic conditions and decrease Pb concentration by root with time. 

Similar tolerance behaviour is also shown by other plants such as vetiver and Targets erecta L., Ageratum sp., 

etc. Chand et al. [182] and Cu, Zn, Cd Cr, Pb, and Ni toxicity did not suppress the growth [183,184]. Siddiqi and 

Husen [184] observed that heavy metal particles assemble in roots, but on exposure to air Pb movement between 

roots and leaves up to a certain extent of NPs was observed [185]. In turn, Gautam and Agarwal, [183] utilized 

Vetiveria zizanioides (L.) to enhance soil quality by removing dense Cu and Mn to translocate to stems from the 

roots, and Banerjee et al. [186] also removed the contamination of iron ore and restore soil quality by the use of 

Vetiveria zizanioides (L.). Results from some studies have shown that plant ferns such as Pteridophyta have a 

higher capacity to prevent As-contamination from soil relative to other hyper-accumulating plants [187].  

Table 8. Phytoremediation of metal by plant with the help of nanoparticles. 

Plant species  Nanoparticles Pollutant References 

Soybean (Glycine max Merr.) NZV-Fe Cd [188] 

(Ryegrass) (Lolium perenne L.) NZV-Fe Pb [189] 

Barley (Hordeum vulgare L.) NZV-Fe As [190] 

 Ryegrass (Lolium perenne L.) Nano carbon black and 

nano-hydroxyapatite  

Pb [150] 

Cabbage (Brassica oleracea L.) Biochar supported Nano 

hydroxyapatite 

Pb [191] 

Ryegrass (Lolium perenne L.) Nano hydroxyapatite Pb [192] 

Sunflower (Helianthus annuus L.) Zeolite and SiO2 

TiO2 

Zn, Pb 

Cd 

[193] 

[194] 

Chand et al. [182] found that on increasing the amount of metal used, in plants maximum was the 

concentration of the heavy metals which gives a higher translocation rate of metals such as Cr, Ni, and Cd in root 

shoot but accumulation rate is higher in leaves. Similar results were found by Coelho et al. [195] where the higher 

the concentration of Cr in the nutrient solution higher the rate of accumulation of levels of Cr in the plant. 

Choudhury et al. [195] utilized Brassica sp. (Indian Mustard) and Tagetes erecta L. for a Cr, Pb, Cu, and Zn 

extraction and found Tagests erecta L more capable of extracting Cr, Cu, and Zn. There are differences in the 

accumulation rate of different heavy metals in the same plant depending on which type of NM is applied since 

each metal is having a different binding capacity and the formation of the chelating ability depends on the extent 

of electronegativity or positivity of the metal thus involved as shown in Table 8.  
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5. NPs and Their Role in Improving Adaptation of Plants Towards

Progressive Changes in Climatic Conditions 

Now a day's food security is a challenging issue due to the expansion of urbanization of population growth 

within the limited resources that cause climate alteration. Climate alteration or change refers to changes in 

temperatures, water scarcity, salinity, toxic metal, and pollution. But the major concern is accelerating the 

adaptation of plants to these changes due to climate change without threatening the sensitivity of ecosystems [196]. 

Numerous efforts are done to improve management practices and the development of technologies toward the 

overall sustainability of the ecosystem [197]. Utilization of NPs in the agricultural system suggests crop yield 

increase by Nano-fertilizers in existing adverse environments. Salinity stress is a critical issue because 23% of 

cultivated land worldwide is affected. The use of Nano- SiO2 in squash and tomato plant under salt-affected area 

improve seed germination, chlorophyll content, plant weight, proline accumulation [133,198], and Cd stress in 

wheat [140]. According to Torabian et al. [199], foliar spray of Nano-FeSO4 on Helianthus Annus (L.) shows an 

affirmative response towards tolerance due to salinity as a result of decreasing the Na+ absorption from leaves. 

Recently, Nano-SiO2 could effectively increase the UV-B stress in wheat [200] and the availability of Nano-

zeolite improves nutrient availability which helps in seed germination and growth [201]. In addition, NPs are 

found to be effective in the detoxification or remediation of harmful pollutants like heavy metals show in Figure 

3. Fertilizers containing Si-based NPs are also effective against Cd, Pb, Zn, and Cu because it shows the putative

effect on traditional fertilizers in reducing toxicity due to the presence of heavy metals in the soil [202]. Biotic 

factors influenced pests and diseases of Crops [203]. To minimize crop losses farmers used a huge quantity of 

inorganic pesticides which adversely affect human health and alter sustainability. Metal oxide NPs of Cu, Zn, and 

Mg effectively switch many plant diseases [204–206]. Recently in the field of plant protection using Nano-

composites for plant protection due to their high effectiveness and eco-friendly nature [207]. NM also helps crop 

growth under unfavourable conditions by increasing enzymatic activity [208]. Application of Nano-SiO2 and ZnO 

increases the accumulation of water uptake, nutrients, and amino acids thereby increasing the activity of catalase 

enzyme, superoxide dismutase, nitrate reductase, and peroxidases eventually improving the tolerance of plants to 

extremely harsh climatic conditions [140,209]. In addition, according to Jampílek and Kráľová [210], NPs regulate 

the expression of stress genes. Therefore, further work is required to identify the cascades for the regulation of 

genes by specific NPs in different plant species. 

Figure 3. NPs and their role in Improving Adaptation of Plants Towards. 

6. Conclusion and Prospects

ENMs play a significant role in the sustainable development of the environment. It is, therefore, necessary 

to study their toxicity to their surrounding ecology and environment. The study of the use ENMs in plants is 

related to their behaviour during translocation in plant systems and is dependent upon their surface energy, type, 

size, and chemical behaviour.  

Literature studies have revealed that NPs show both positive and negative effects based on the part of the 

plant on which it acts. Despite the availability of several studies dealing with the different aspects of working of 

NPs it is still difficult to predict their behaviour in plants since it is based on several interrelated factors. Some 



Volume 1 Issue 1|2023| 34  Universal Journal of Green Chemistry

case studies have shown that the NPs improved the process of seed germination and enhanced plant growth 

parameters. However, many contradictory results are also available. Studies related to the Phytotoxicity of NPs 

due to their direct exposure have emphasized the need for an ecologically responsible release of NPs containing 

waste in the environment. The most commonly used metal-based NPs include CuO, Ag, Au, ZnO, CeO2, and TiO2. 

Due to their wide range of applications, NPs have become the materials of choice among technology experts and 

scientists. Future studies should aim to obtain an enhanced mechanistic role of morphological and chemical 

behaviour on toxicity uptake and translocation of the NPs in plants and their parts.  
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