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Abstract: Today, environmental pollution stemming from organic pollutants poses a significant challenge. Various

categories of organic compounds, including dyes, pharmaceuticals, aromatics, volatile organic compounds, and more,

contribute to contamination of water, soil, and air. The presence of these organics in water not only harms aquatic life

but also poses health risks to humans. Thus, it is imperative to eliminate these organic pollutants from the environment.

Different methods, such as absorption, adsorption, filtration, biodegradation, chlorination, ozonation have been developed

to remove organics from waste water. Photodegradation is one of the important methods to remove organic compounds from

aqueous media. Different catalysts have been used by different researchers for photocatalytic degradation of organics. Uses

of nanomaterials as photocatalysts have been seen to be a potential approach of remediation of toxic organic compounds

from environment. In this approach heterogeneous catalysts using semiconductor nanomaterials have shown to be good

photocatalysts. These catalysts have been discovered to exhibit greater efficacy in advanced oxidation processes for

eliminating organic contaminants from wastewater. Way of improving photodegradation efficiencies was also discussed.

Metal and non-metal doping to regular materials has been seen to be a good approach of enhancing degradation efficiencies

of normal photocatalysts. This discussion delves into the sources of these organic compounds, their detrimental effects on

the environment, and a comprehensive exploration of conventional degradation methods available for combating these

compounds.
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1. Introduction

In recent decades, semiconductor nanomaterials have garnered significant attention as photocatalysts for the

degradation of organic pollutants in polluted water. The primary aim of this process is to transform toxic compounds into

non-toxic or beneficial products. Effective photocatalysts should possess specific characteristics, including a high surface

area, activity under visible light, increased generation of electrons and holes, minimal recombination rate, reusability,

and more1,2. Among various semiconductor nanomaterials, TiO2, CdS, ZnS, ZnO, and CuO are widely acknowledged

as photocatalysts due to their robust oxidizing capabilities, chemical stability, and affordability3–5. Pure semiconductor

nanomaterials typically encounter issues with electron-hole recombination and primarily exhibit activity under UV-light

irradiation due to their high band gap. In addition to semiconductor materials, nanoparticles of gold, silver, and iron are

also utilized for the degradation of organic pollutants in wastewater6. Given that only a minor portion (approximately
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3–5%) of solar light falls within the UV region, it is anticipated that merely 3–5% of the entire solar radiant energy is

beneficial for photocatalysis purposes. Consequently, for a specific photocatalyst, doping is employed to attain particular

properties. For example, doping can alter the band gap of the host material, thereby enhancing the photocatalytic activity

by increasing the presence of photo-generated electrons and holes7. Doping nanomaterials serves to decrease the band gap

of the material, establishing an intermediate energy state within its energy levels. This reduction in band gap facilitates

applications in photocatalysis under visible light irradiation. Moreover, the intermediate energy state enables control

over the emission properties of the base material. For instance, doping noble metals like silver into TiO2 enhances

anatase crystallinity, surface area, and lowers the band gap, thereby rendering TiO2 an environmentally sustainable

and efficient photocatalyst for degrading persistent organic pollutants8,9. The introduction of samarium ions into TiO2

enhances specific surface area, improves the efficiency of electron-hole pair separation, and mitigates the recombination

tendency of photoinduced electrons and holes. Consequently, the overall photocatalytic activity of TiO2 for degrading

methylene blue dye experiences a significant improvement10. The incorporation of iron (Fe) into TiO2 results in the

attainment of high specific surface areas, reduced crystal sizes, a mesoporous structure, and an abundance of surface-

adsorbed water and hydroxyl groups. These characteristics collectively enhance the photocatalytic activity of Fe-doped

TiO2 for the degradation of XRG dye11. Doping TiO2 powders with fluorine enhances surface acidity, promotes the

creation of oxygen vacancies, increases the number of active sites, ultimately leading to the achievement of visible light

photocatalytic activity for TiO2 powders
12. The incorporation of other materials like Sn13, Si14, and tri-doping of F–B–S15

into TiO2 nanoparticles enhances various properties such as UV-induced photodecomposition activities, visible light

photocatalytic activity, significantly larger specific surface area, shorter duration of photocatalytic cleaning reactions, and

suppression of the recombination of photogenerated electrons and holes. Additionally, beyond TiO2, other photocatalysts

such as ZnO, CdS, ZnS, Nb2O3, among others, have been investigated with different doping elements to enhance their

photocatalytic performances16–18. Among various semiconductor nanoparticles, TiO2, CdS, and ZnS hold significance due

to their potential applications across diverse fields such as catalysis, biomedicine, sensors, and electrical and electronics

industries19–21. The photocatalytic efficacy of these nanoparticles under visible light primarily hinges on factors such

as their band gap, electron-hole recombination rate, specific surface area, and crystalline structure22,23. Therefore, the

pursuit of creating a cost-effective and highly efficient photocatalyst remains a promising endeavor, both from fundamental

research and industrial perspectives.

In this study photodegradation of different organic compounds such as pharmaceutical products, organic dyes, and

aromatic compounds has been studied in aqueous medium. Different removal or degradation techniques for these organic

compounds have been discussed. Advantages and disadvantages of each technique along with its efficiency have also been

discussed. Effects of different photocatalysts along with its dose have been explored. Other reaction parameters such as in

initial organic concentration, light source, time, and temperature have also been discussed.

2. Degradation of Pharmaceutical Products

Pharmaceutical compounds represent a significant class of toxic organic pollutants, primarily contributing to soil and

water pollution. Certain categories of pharmaceuticals, such as antibiotics and antipyretics, are utilized extensively, with

excess quantities discharged into the environment. Similar to other pharmaceutical compounds, antibiotics are incompletely

metabolized within the body and are consequently released into the environment. The primary sources of pharmaceutical

contaminants include sewage treatment plants from pharmaceutical industries and municipal wastewater. Extensive use of

pharmaceutical products such as paracetamol, naproxen, amoxicillin, metronidazole, ibuprofen, etc creates environmental

problem. Especially, excess quantity presence of antibiotics in environment causes soil and water pollution24–26. Hence,

the thorough elimination of these organic pollutants from the environment is imperative. Various conventional methods,

such as advanced oxidation processes (AOP), including electrochemical oxidation, ultrasonic radiation, and ozonation,

have already been employed for the degradation of these pharmaceutical compounds. Reported studies on photocatalytic

degradation of different pharmaceutical compounds by different researchers are shown in Table 1. Commonly used

pharmaceutical compounds, such as paracetamol, metronidazole, naproxen, ibuprofen, amoxicilin, etc were used for
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photodegradation studies. photodegradation was conducted under visible and UV-light. Different nanocatalyst such as

AgBr-α-NiMoO4, ZnO, ZnSnO3, Zn2GeO4, etc. were used as photocatalysts. From the reported studies (as shown in

Table 1) it has been seen that temperature for photodegradation was in the range of 25 ºC–450 ºC with initial organic

concentrations were found to be in the range of 0.998 to 15 mg/L. Time taken for photodegradation was found to be in the

range of 24–600 min. Photodegradation efficiencies were found to be around 80–100%. However, the existing methods

are having some limitations such as more time consuming, UV-light dependent, requirement of high catalyst dose, catalyst

regeneration problem, etc. Because of these reasons 100% removal of pharmaceutical compounds from environment is

still a challenging job.

Table 1. Photodegradation of pharmaceutical compounds utilizing various nanoparticles as photocatalysts.

Catalyst
Catalyst
Dose
(g/L)

Pharmaceutical
Compound

Initial
Organic
conc.
(mg/L)

Chemical Structure Light Source Parameters Time (min) % Deg. Ref.

Aug-C3N4 0.0003 Paracetamol -
Visible Light
(365 nm)

Temp. 25°C 24 100 27

AgBr-α-NiMoO4 Naproxen -
Visible Light
(420 nm)

Temp. 30°C 100 84 28

Ag-ZnO - Paracetamol 4.994
Visible Light
(420 nm)

Temp. 450 °C 240 92 29

CO-GCN 0.01 Paracetamol 1 Sunlight Temp. 30°C 120 82.6 30

Ag-TiO2, CdS,
ZnS

0.5 Metronidazole 15
125 W, visible light

(435.8 nm)
- 120 94-95 25

ZnO/Sep. - Ibuprofen - UV-Visible (320 nm) Temp. 39°C 600 80 31

ZnSnO3/RGO 1 Metronidazole 5 500 W visible lamp 180 72.5 32

H2O2, Fe
3+ 0.00274,

0.00299
Paracetamol 0.998 Sunlight Temp. 30°C 240 90 33

Zn2GeO4 1 Metronidazole 10 UV light (253.7 nm) - 80 ~100 34

3. Degradation of Dyes

Contamination of dyes in environment is another issue. Especially synthetic dyes are more concern in this regards.

Different sources of synthetic dyes in waste water are textile industries, pulp and paper industries, petroleum industries,

etc35,36. In textile industries almost 15% of synthetic dyes are unutilized. This unutilized synthetic dyes are released into
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the waste water stream and ultimately coming to natural stream and river37. Regular discharge of synthetic dyes causes

severe toxic effect to aquatic life, human beings and animals. Use of dye contaminated water promotes mutagenicity

and carcinogenicity effect. Presence of excess quantity of synthetic dyes in water increases biochemical oxygen demand

(BOD) and chemical oxygen demand (COD), which ultimately lower the water quality38. So, removal of dyes from

waste water is highly essential. Various methods have been developed for this purpose, including adsorption, absorption,

filtration, and more. Each and every methods are having some limitations, such as lower dye removal efficiency, high

cost, complicated method, etc. In recent years, there has been considerable interest in nanoparticle-based dye degradation

due to their high efficiency in completely removing organics from contaminated water. These methods are characterized

by their simplicity, low cost, time efficiency, and environmental friendliness39–41. Nevertheless, semiconductor-based

nano-photocatalysts for dye degradation have garnered significant attention in the fields of environmental remediation and

solar energy utilization. Over the past few decades, heterogeneous photocatalysis employing semiconductor nanomaterials

has emerged as an advanced oxidation process for effectively removing dye pollutants from wastewater42. Modification of

semiconductor nanomaterials in the presence of doping helps to improve advanced oxidation process further. Different

doped nanoparticles such as Fe-TiO2
43 and Ce-, Cu-, Mn-, Sn-TiO2

44 were used as photocatalysts for the degradation of

dyes under UV light irradiation. Some other doped materials, such as Fe-CdS43, Si-, Fe-TiO2
44, C-TiO2

45, Cu-ZnS40,

N-, S- TiO2
46, and Pt-TiO2

47 were utilized as photocatalyst for degradation of dyes under visible light. Some reported

studies on photocatalytic degradation of different dyes by different researchers are shown in Table 2. Different dyes such

as Malachite Green, methylene blue dye, etc. have been degraded under visible and UV light. Photocatalysts such as

TiO2, modified TiO2, ZnO, SiO2 were employed to degrade the dyes. The literature review (as depicted in Table 2) reveals

that initial organic concentrations typically ranged from 5 to 100 mg/L. Photodegradation times varied between 30 min

and 14 h. Degradation efficiencies were found to be 90–95%. In recent years, there has been a growing research interest

in the visible light-induced photodegradation of dyes using nanoparticles, aiming to enhance the process effectiveness,

environmental friendliness, and cost-efficiency. Much of this research focuses on improving photocatalytic efficiency

through the utilization of various doped nanoparticles, mesoporous materials with high surface areas, and similar strategies.
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Table 2. Photo-degradation of dyes in the presence of different nanoparticles as the photocatalyst.

Catalyst
Catalyst
Dose
(g/L)

Name of Dyes
Initial Dye

conc.
(mg/L)

Chemical Structure Light Sources Parameters
Time
(min)

% Deg Ref.

La Doped ZnO-SiO2 0.015 Malachite Green 15 UV–Visible Temp. 30 °C 140 96.1 48

Ag-ZnO 0.02 Methylene blue dye - UVVisible Light Temp. 30 °C - 82.15-98.38 49

Ag-TiO2 0.25 Methylene blue dye 25
125 W, visible light

(435.8 nm)
- 180 94.99–95.9 3

Mn, Ni, Cu-ZnS 0.15 Methylene blue dye 5 500 W HL pH = 11 30 87.3–95.6 50

Sm-TiO2 1.0 Methylene blue dye 100 160 W HPMVL (UV) - 120 95 51

N, S- TiO2 0.2 Methylene blue dye 9 500 WML pH = 3 240 90.61 52

Ce, Cu, Mn, Sn-TiO2 0.0375 Methylene blue dye 10 UV light, 254 nm - 90 ~97 53

Fe-ZnO 0.448 Methylene blue dye 32 UV/sun light - 105/75 41/91 54

Pt/TiO2 1 Methylene blue dye 10 300 W XL - 50 ~95 55

Si, Fe, TiO2 1.0 Methylene blue dye 20 500 W LAXL - 180 82.51 56

NaYF4:Yb,Tm/TiO2 1.0 Methylene blue dye 15 DL (980 nm) - 14 h 65 57

4. Degradation of Aromatic Compounds

Apart from pharmaceutical compounds and dyes presence of aromatic compounds in water causes environmental

problems. Presence of aromatic compounds, such as phenolic compounds, benzo compounds, naphthalene, etc in water

directly affect on the aquatic life and indirectly affect to animals and human beings. Aromatic compounds find utility

in various industrial productions including paper and pulp, pesticides, dyes, explosives, cosmetics, pharmaceuticals,

and more58–60. Unused aromatics from those industries are coming to effluent water and are mixing with natural water

stream. Direct use of this water causes risks to human, animals and other living things. The contamination of water

with aromatic compounds through regular usage can lead to severe health issues such as liver or kidney damage, lung

irritation, increased heart rate, and skin problems. Consequently, the removal of aromatic compounds from water has

become a significant concern today. However, conventional chemical or biological methods face challenges in effectively

removing or degrading aromatics in effluent water due to their complex structure and their toxic and mutagenic effects

on biological systems61. Over the last few years photodegradation of aromatic compounds are attracted a lot because of

its easy and efficient techniques. Different heterogeneous catalyst have been employed for this purpose. Some reported

studies on photocatalytic degradation of different aromatic compounds by different researchers are shown in Table 3.

Aromatic compound such as benzene, chlorobenzene, nitrobenzene, etc. have been degraded in the presence of different

photocatalysts. Photodegradation studied was conducted under visible and UV light. Based on the literature findings (as

outlined in Table 3), the temperature for photodegradation typically fell within the range of 20 ºC to 30 °C, while initial

organic concentrations varied from 6.153 to 400 mg/L. The duration of photodegradation ranged from 10 to 480 min.

Percent degradation efficiencies were found to be around 53–98%.
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Table 3. Photodegradation of aromatic compounds using various nanoparticles as photocatalysts.

Catalyst
Catalyst
Dose

Aromatic
Compound

Initial
Organic conc.

(mg/L)

Chemical
Structure

Light Source
Time
(min)

Parameters % Deg. Ref.

BiPO4 0.2 g/L Benzene 250
UV lamps
(254 nm)

100 Temp. 30 °C - 62

TiO2 0.2 g/L Nitro benzene 50.1 UV lamp, 254 nm 180
air feeding of
150 mL/min

90 63

TiO2/bentonite 0.1 g/L chlorobenzene 400
UV light & 65 W

CFL lamp
10 Temp. 20 °C 98% 64

N-Ce-TiO2 1 g/L Nitro benzene 50
visible lamp,

300 W
240 Temp. 30 °C 53 65

TiO2 0.2 g/L Nitro benzene 49.94
mercury vapour

lamp
480 air purging 98% 66

TSA-MIP-TiO2 0.1 g/L Nitro benzene 6.153
UV lamp,
253.7 nm

90 - >95 67

5. Conclusions

Organic compounds such as pharmaceutical compounds, dyes, aromatic compounds, etc are the major pollutants

present in water. For the degradation or removal of these organics different methods have been developed such as

filtration, absorption, adsorption, Photodegradation, etc. Photodegradation of organic compounds is considered as one

of the most important methods for this purpose. Especially nanomaterials based photodegradation is considered as an

efficient technique for the degradation of organic compounds. In this approach different semiconductor material, such

as TiO2, ZnS, CdS, ZnO, CdO, SiO2, etc has been used in organic compound degradation in different methods. TiO2,

especially nano TiO2 are preferred for photocatalytic degradation of organics because of its low toxic levels, photocatalytic

nature, cost effectiveness, stability, and easy availability. To enhance the efficiency of the nanoparticles as photocatalyst,

different modifications have been developed further. Metal impregnation along with semiconductor nanoparticles further

improved the degradation efficiency of host materials. Metal doping is also a process to enhance the degradation efficiency

of semiconductor nanomaterials. Developing semiconductor nanomaterials with enhanced selectivity and specificity

for target organic compounds is a crucial focus. The future of organic compound degradation in aqueous media using

semiconductor nanomaterials shows promise in tackling water pollution challenges. Additionally, future research could

investigate synergies between semiconductor photocatalysis and processes like filtration, absorption, adsorption, and

biological treatment. Nonetheless, ongoing research and innovation are imperative to translate these possibilities into

practical solutions.
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