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Abstract: 
The vehicle routing problem (VRP) is a well-known problem in the logistics sector. In this study, two objectives, 
minimizing the total distance and maximizing the saving value, were considered in VRP with a fuzzy environment. The 
game theory approach is proposed for determining the weights of objectives when decision-makers have insufficient 
knowledge of assigning the weights. Thus, a fuzzy pay-off matrix is proposed for determining the weights of objectives 
by combining the fuzzy two-person zero-sum game with mixed strategies (FTZG with MS) and membership functions. 
Therefore, the fuzzy multi-objective programming (FMOP) model is adapted to the VRP model, which is named 
Adapted FMOP algorithm for VRP. Proposed algorithm clusters customers according to two objectives and by using 
four fuzzy operators, and routes customers with the traveling salesman problem (TSP) model in order to avoid the 
non-deterministic polynomial-time hardness (NP-hard) structure of VRP. In the end, the results are improved using 
local search methods. The main contribution of the Adapted FMOP algorithm for VRP is that it provides a solution 
that considers more than one objective without the need for decision makers’ view on the weights of objectives in 
all decision models in the fuzzy environment. Also, the proposed algorithm can find the solution with the help of a 
mathematical model without requiring any heuristics or metaheuristics, since it primarily performs clustering. Firstly, 
the efficiency of this algorithm was tested on problems in the literature. The Adapted FMOP algorithm for VRP 
achieved the best-known solutions by some small margins and exceeded the best-known solution for one problem in the 
literature. After seeing that the performance of the algorithm was sufficient, a data set of a firm in the construction sector 
was implemented to see how the algorithm works in real life and the obtained results were discussed. The solutions 
demonstrate that the Adapted FMOP algorithm for VRP also works well for real-world problems.

Keywords: vehicle routing problem (VRP), fuzzy multi-objective programming (FMOP) model, game theory under 
fuzziness, fuzzy pay-off matrix

1. Introduction and motivation
1.1 Vehicle routing problem

The vehicle routing problem (VRP), first proposed by Dantzig and Ramser (1959), involves the transportation 
process with an impact on the total cost ranging between 10% and 20% (Toth & Vigo, 2002). Thus, it is significant to 
reduce the cost of transportation of each vehicle involved in delivering the demands to the customers. In this regard, 
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VRP aims to set a route for each vehicle that departs from and arrives at a depot and to minimize the total distance of 
these routes. The main constraints are visiting each customer at once, not exceeding each vehicle capacity, and providing 
all customer demands. In addition to the constraints, time windows of each customer, number of different depots, 
additional features of customers such as backhaul customers, pick up customers, etc. may be considered. Furthermore, 
for some types of VRP, the route may end with one of the customers instead of a depot. 

1.2 Motivation

VRP has many variants with additional constraints such as VRP with time windows, VRP with pickup and 
deliveries, VRP with backhauls, open VRP, VRP with multiple depots, and VRP with a heterogeneous fleet, etc. Since 
VRP is non-deterministic polynomial-time hardness (NP-hard), all variants are also NP-hard. This precludes obtaining 
a feasible solution by solving mathematical models. Thus, various heuristic and metaheuristic algorithms have been 
proposed in the literature to procure the results within a reasonable time. However, to solve VRP with backhauls, Yalcin 
and Erginel (2015) developed an algorithm named as the fuzzy multi-objective programming-vehicle routing problem 
with backhauls (FMOP-VRPB) algorithm, which is based on mathematical models. The FMOP-VRPB algorithm is a 
cluster-first route-second algorithm and it uses mathematical models at each phase. Since the size of the mathematical 
models for each phase is relatively small, the solutions for each phase are obtained within an appropriate time manner. 
Furthermore, the computational results of the FMOP-VRPB algorithm are competitive.

Although there are remarkable studies about heuristic and metaheuristic algorithms to solve VRP, there is a gap 
in developing algorithms based on simple mathematical models. Thus, the main aim of this paper is to solve the NP-
hard VRP using mathematical models which are easy to implement, can be solved by optimization software, and do 
not required parameter setting as in heuristics and metaheuristics. Additionally, a fuzzy environment is significant since 
the value of membership functions varies between 0 and 1 regardless of the objective function being maximization and 
minimization. Furthermore, the membership function consists of ideal and anti-ideal values of the objective function, 
which are the best possible and the worst possible solutions under the problem constraints. Thus, fuzzy methods try to 
find a solution close to the ideal value and far away from the anti-ideal value. Therefore, the FMOP-VRPB algorithm 
is adopted to solve the VRP although VRP with backhaul is a more difficult problem than VRP due to additional 
constraints and decision variables for backhaul customers. Moreover, the implementation of FMOP-VRPB algorithm 
fits our purpose without the need for any heuristics or metaheuristics. The adopted method is called the adopted 
FMOP algorithm for VRP, which consists of clustering, routing, and local search phases. Since VRP does not have 
backhaul customers, the mathematical models for each phase are remodeled according to the structure of VRP and 
the implementation of local search is redesigned under the constraints of VRP. The clustering phase uses (FMOP) and 
determines the weights with fuzzy structure and game theory. Then the routes are generated by using the mathematical 
model formulation of traveling salesman problem (TSP). Finally, the solution improves by local searches. Thus, the 
decision-maker does not need to define any parameter for the algorithm. It is emphasized that the main advantage of the 
algorithm is to find a solution by standard optimization software and not to require parameter setting, unlike heuristic 
and metaheuristic algorithms. 

In Section 2, the literature review is given. Some preliminaries are explained in Section 3. The proposed Adapted 
FMOP algorithm for VRP is described in detail in Section 4. Then, in Section 5, the computational results in terms of 
benchmark problems are given and discussed. A real case of a company in the construction sector is explained in Section 
6. Concluding remarks are made in Section 7. 

2. Literature review
Numerous variants of VRP have been introduced for many years in the literature. The variants of classical VRP 

problems can be classified as (see also Figure 1) capacitated VRP (Letchforda & Salazar-González, 2015; Wei et al., 
2015; Cardoso et al., 2015), VRP with time windows (Hong & Park, 1999; Qi et al., 2015), VRP with pickup and 
deliveries (Dimitrakos & Kyriakidis, 2015; Avcı & Topaloglu, 2015), VRP with backhauls (Goetschalckx & Jacobs-
Blecha, 1989; Ropke & Pisinger, 2006; Wang & Wang, 2009; Yalcin & Erginel, 2015; Koc & Laporte, 2018), open VRP 
(Zachariadis & Kiranoudis, 2010; Aksen et al., 2007; Brito et al., 2015; Erbao et al., 2014), VRP with multiple depots 
(Montoya-Torres, 2015; Chan & Baker, 2005; Ghafurian & Javadian, 2011), and VRP with the heterogeneous fleet (Koc 
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et al., 2015; Salhi et al., 2014). Furthermore, VRP with time-dependent travel times has been studied recently because 
travel times are also dependent on the traffic congestion of the roads, which is based on queuing theory (van Woensel et 
al., 2007; van Woensel & Cruz, 2009; Oyola et al., 2018 for review). Besides, with the increase in the use of drone and 
electric vehicles, studies have been started on the routing of these vehicles (Pelletier et al, 2019; Wang & Sheu, 2019; 
Schermer et al, 2019, Keskin et al, 2019).

Figure 1. The variants of VRP

2.1 Exact algorithms for vehicle routing problem

Exact algorithms (see Laporte & Nobert, 1987; Valle et al., 2009), several heuristics categorized as constructive 
heuristics, improvement heuristics and two-phase heuristics (see Laporte & Semet, 2001), and meta-heuristics have 
been proposed to solve the VRP. Constructive heuristics generate a solution under the problem constraints and no 
improvement is applied, while improvement heuristics involve an improvement of the initial solution. The Saving 
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algorithm (Clarke & Wright, 1964) and Lin’s λ-opt approach (Lin, 1965) are examples of constructive heuristics and 
improvement heuristics, respectively. 

2.2 Heuristic algorithms for vehicle routing problem

Cluster-first route-second methods and route-first cluster-second methods are classified as two-phase heuristics. 
Sweep algorithm (Gillett & Miller, 1974), Fisher and Jaikumar (1981) algorithm, Bramel and Simchi-Levi (1995) 
algorithm are cluster-first route-second methods. In these methods, customers are clustered to vehicles first by using 
different clustering methods, and then the customers for each cluster are routed by using a traveling salesman algorithm. 
In the sweep algorithm, clusters are formed using the polar-coordinate angle. In the Fisher and Jaikumar (1981) 
algorithm, clusters are generated by a generalized assignment model. In the Bramel and Simchi-Levi (1995) algorithm, 
clusters are formed by capacitated location problems. The seed customers are defined at the beginning in both the 
Fisher and Jaikumar (1981) and the Bramel and Smichi-Levi (1995) algorithms. Afterward, Koskosidis and Powell 
(1992) and Baker and Sheasby (1999) extended the Fisher and Jaikumar (1981) algorithm with different seed customers 
selection strategies. Furthermore, in these studies, one objective, that is, the minimization of the cost, was taken into 
consideration. Besides, Dijkstra’s (1959) algorithm is an example of route-first cluster-second methods. This method 
routes all customers first and then divides the route into clusters. Beyond these heuristics, Juan et al. (2010) proposed 
a simulation for the routing of the vehicles using the generalized Clark and Wright (1964) saving heuristic hybrid 
algorithm and Ball (2011) developed heuristics based on mathematical programming.

2.3 Metaheuristic algorithms for vehicle routing problem

Metaheuristics developed for solving VRP are summarized as simulated annealing (Alfa et al., 1991; Breedam, 
1995), tabu search (Taillard, 1993; Osman, 1993; Gendreau et al., 1994; Xu & Kelly, 1996; Augerat et al., 1998; 
Barbarosoglu & Ozgur, 1999; Toth & Vigo, 2003; Cordeau & Maischberger, 2012), ant colony optimization (Bullnheimer 
et al., 1999; Reimann et al., 2004; Maezzeo & Loiseau, 2004; Bell & McMullen, 2004; Li et al., 2019; Zhang et 
al., 2009), genetic algorithm (Baker & Ayechew, 2003; Nazif & Lee, 2012), and particle swarm optimization (Ai & 
Kachitvichyanukul, 2009). In addition to these, hybrid of several metaheuristics such as simulated annealing and tabu 
search (Osman, 1993; Lin et al., 2009), ant colony optimization and scatter search (Zhang & Tang, 2009), particle 
swarm, multiphase neighborhood, and greedy randomized adaptive searches procedures (Marinakis et al., 2010), and 
genetic and particle swarm optimization algorithms (Marinakis & Marinaki, 2010) are proposed in the literature to solve 
VRP. Additionally, Yurtkuran and Emel (2010) used an electromagnetism-like algorithm for continuous problems with 
bounded variables. Chen et al. (2010) proposed an iterated variable neighborhood descent algorithm. Szeto et al. (2011) 
used an artificial bee colony algorithm to solve the VRP. Drexl (2012) provided the state of the art of scientific research 
on VRP. He defined the characteristics of VRP in five dimensions: requests, fleet, route structure, objectives, and scope 
of planning. He presented the rich VRP term that incorporates more complex constraints and objectives of real-life 
routing problems. Derigs and Vogel (2013) proposed a heuristic framework for solving rich VRPs and implemented a 
flexible software framework (also see Toth & Vigo, 2002, and Cordeau et al., 2002 for surveys).

Moreover, fuzzy set theory is used to model VRP with fuzzy demand (Teodorović & Pavković, 1996; Erbao & 
Mingyong, 2009, 2010; Kuo et al., 2012; Mehrjerdi & Nadizadeh, 2013) and fuzzy travel time (Zheng & Liu, 2006; 
Tang et al., 2009; Zarandi et al., 2011; Ghannadpour et al., 2013), and the fuzzy models are solved with a heuristic or a 
metaheuristic algorithm such as heuristic-based on sweep algorithm, hybrid of genetic algorithm and fuzzy simulation, 
hybrid of evolutionary algorithm and simulated annealing, and hybrid of genetic algorithm and particle swarm 
optimization, etc. 

3. Preliminaries
3.1 Multi-objective optimization and membership functions

The multi-objective model has more than one objective function such as ᴢ1, ᴢ2, ... ᴢn to optimize under the problem 
constraints x ϵ X. In this paper, two objective functions are considered ᴢ1 and ᴢ2. Every objective has an ideal value and 
an anti-ideal value which can be obtained by solving each objective in optimal and suboptimal manners individually 
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under the problem constraints, respectively. The ideal value represents the optimum value, and the anti-ideal value 
indicates the furthest value to the ideal value when there is only one objective in the model under the constraints. It is 
difficult to find the optimum solutions for all objectives simultaneously. For this reason, there is a set of solutions called 
the Pareto Optimal Solution. There is a trade-off between objectives. While constructing the fuzzy pay-off matrix, the 
ideal (utopian) and anti-ideal (nadir) values of each objective function are used to define the membership functions       
µk (x) Ɐ k = 1,2, so no decision is made. The value of the membership function may take 1 at the best case, 0 at the worst 
case, and alternate between 0 and 1, regardless of whether the objective is a maximization or a minimization problem. If 
the membership function of an objective is 1, then the objective reaches its ideal value, and similarly, if the membership 
function of an objective is 0, then the objective reaches its anti-ideal value.

3.2 Fuzzy operators

Fuzzy operators which are used in the clustering phase are explained below. The original constraints of the multi-
objective programming model are shown as x ϵ X.

Max-min operator (MO): The following model in equation (1) describes the min operator, where λ is the overall 
satisfaction level (Zimmermann, 1978)

(1)

Two-phase approach (TPA): The first phase is the same as the MO. The second phase is modeled in equation (2) (Li 
et al., 2006)

(2)

where wk is the weight of the kth objective, λk is the satisfaction level of the kth objective, and λk
* is the membership 

degree of the kth objective that is obtained from the first phase.
Weighted additive model (WAM): The following model of equation (3) describes the structure of the WAM (Tiwari 

et al., 1987)

(3)

Weighted max-min model (WMM): The structure of the model is described in equation (4) (Lin, 2004)

(4)

4. Problem formulation and resolution methodology
The Adapted FMOP algorithm for VRP is based on the paper by Yalcin and Erginel (2015). The proposed Adapted 
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FMOP algorithm for VRP has three sequential phases. The steps of the proposed algorithm are given as follows:
Phase 1: Clustering Phase

Step 1: Set the multi-objective model in the crisp case for clustering customers.
Step 2: Calculate the membership functions.
Step 3: Determine the weights of the objectives by the fuzzy two-person zero-sum game with mixed 
strategies (FTZG with MS). 
Step 4: Set the FMOP model and solve it with fuzzy operators to cluster customers and assign them to the 
vehicles.

Phase 2: Routing Phase
Step 5: Set and solve the TSP integer programming model for routing.

Phase 3: Local search
Step 6: Use local search operations to improve the route.

4.1 Phase 1: Clustering phase

Figure 2. Flow chart of the Adapted FMOP algorithm for VRP

Clusters of customers are formed by assigning the customers to each vehicle under the vehicle capacity in the 
clustering phase. Two objectives (the first objective is minimizing the distance and the second objective is maximizing 
the saving value) are considered while the other studies (Fisher and Jaikumar, 1981; Bramel and Simichi-Levi, 1995; 
Koskosidis & Powell, 1992; Baker & Sheasby, 1999) consider one objective. Saving value is the rate that considers 
the benefit of going from a customer to another, taking into account the distance of these customers from the depot. 
Furthermore, the mathematical model defines the seed customers (equal to the number of vehicles) unlike similar 
studies (Fisher & Jaikumar, 1981; Bramel & Simichi-Levi, 1995, Koskosidis & Powell, 1992; Baker & Sheasby, 1999) 
and assigns other customers to the seed customers. Therefore, there is no need to define seed customers at the beginning 
of the algorithm by a decision-maker or by any method. In a sense, the proposed clustering phase has two new novelties 
unlike the existing literature: considering two objectives and defining the seed customers by the multi-objective model. 
Moreover, using fuzzy approaches for both defining the weights of objectives and solving the multi-objective model are 
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other contributions.

4.1.1 Step 1: Set the multi-objective model in the crisp case for clustering customer

Sets of the cluster phase:
i, j customer nodes (i = j = 1, …, N)
Parameters of the cluster phase:
N number of customers
dij distance between nodes i and j
sij saving value between nodes i and j (d0i + d0j – dij)
ɑi the demand of customer i
C the capacity of each of the vehicles
K number of vehicles
Decision variable:
xij = {1 if node i is assigned to node j0 otherwise}
If xij =1 ϶ i = j, it means that the node i/j is a seed customer.

(5)

(6)

(7)

(8)

(9)

(10)

While equation (5) is minimizing the distance within a cluster, equation (6) is maximizing the saving value within 
a cluster. Equation (7) ensures the assignment of each customer to each cluster at once. The capacity and demand 
constraints are indicated in equation (8). Equation (9) ensures that the number of clusters is equal to the number of 
vehicles. Finally, equation (10) represents the decision variable constraint. 

4.1.2 Step 2: Calculate the membership functions

For the clustering phase, the membership functions of objectives are defined as in the following, and equation (11) 
and equation (12) refer to the first ᴢ1 and the second ᴢ2 objective functions, respectively. 
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where ᴢ*
1 and ᴢ'1 are respectively the ideal and anti-ideal values of the first objective function ᴢ1 and the same 

formulation is valid for the second objective function z2. These values are calculated from (13) and (14) by solving them 
individually under the problem constraints.

(13)

(14)

The degree of membership function changes between 0 and 1, which infers that the ideal or the anti-ideal solution 
is reached. Thus, the membership function degree shows the achievement level of the related objective and it means 
identical whatever the objective (maximization or minimization) is. 

4.1.3 Step 3: Calculate the weights of the objectives

The weights of the objectives are needed to use the fuzzy operators as solution approaches for the multi-objective 
model. For this purpose, the FTZG with MS model, proposed by Yalcin and Erginel (2011) is used. There are two types 
of strategies: objectives ᴢ1,ᴢ2, and the ideal solutions of the objectives x1, x2. Then the membership functions µi(x

j) are 
calculated related to the ideal solutions to form the pay-off matrix shown in Table 1. Finally, the linear program given in 
Equation (15) is solved to obtain the weights of the objectives. 

Table 1. Fuzzy pay-off matrix of the FTZG with MS model

Person I strategies
Person II strategies

x1 x2

ᴢ1 µ1(x
1) µ1(x

2)

ᴢ2 µ2(x
1) µ2(x

2)

(15)

Where ᴢ1 is the objective function, xj is the ideal value of the objective function, µi(x
j) is the membership function value, 

and wi is the weight of objectives.
After determining the weights of the objectives, a multi-objective model can be solved in the fuzzy case using 

several fuzzy operators, such as the max-min operator, the two-phase approach, the weighted additive model approach, 
and the weighted max-min model as follows:

4.1.4 Step 4: Set the FMOP model and solve it with fuzzy operators to cluster customers and assign them to the 
vehicles

After constructing membership functions for each objective, the fuzzy operators given by equations (1)-(4) are 
used to solve the FMOP problem.
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4.2 Phase 2: Routing
4.2.1 Step 5: Set and solve the TSP integer programming model for routing

The TSP integer programming model is solved for each vehicle to obtain the initial routes. 

4.3 Phase 3: Local search
4.3.1 Step 6: Use local search operations to improve the route

Insertion and interchange operations are commonly applied in VRP problems since they are easy to implement 
and successful in improving the solutions obtained so far. Thus, these operations are used to apply the local search 
to improve the solution obtained after the first two phases. Insertion operation picks a suitable customer from the 
selected vehicle and adds the customer into an alternative vehicle while interchange operation exchanges two particular 
customers from two particular vehicles. The operations are applied if the capacity constraint is held and the distance is 
decreased.

5. Computational experiment
The proposed Adapted FMOP algorithm for VRP is tested on the benchmark problems of Christofides (1979) to 

test the performance of the algorithm. The mathematical models in clustering routing phases are solved by using (General 
Algebraic Modeling System) GAMS with the CPLEX 9.0 solver and the local search is applied by Excel Visual Basic 
Application (VBA). All experiments are run on a 2.20 GHz computer with 1.0 GB of RAM. Table 2 represents the 

computational results. The gap is calculated by by proposed model-best known 100,
best known

 × 
 

 which is commonly used in 

VRP. The gap shows the relative distance from the best-known solution. The FMOP-VRP and the best-known solutions 
indicate the total distance for the relevant computed routes. Central processing unit (CPU)-Phase-1, CPU-Phase-2, CPU-
Phase-3, and total CPU are the times in seconds that are needed to compute each phase and total time, respectively.

Table 2. The results of test problems using the Adapted FMOP algorithm

Problem Best known The name of 
solution phase FMOP-VRP % Gap CPU-

Phase-1
CPU-

Phase-2
CPU-

Phase-3 Total CPU

C1 524.61a

TPA 537.34 2.43 7.139 0.873 0.031 8.043

WAM 537.34 2.43 7.139 0.873 0.031 8.043

WMM 537.34 2.43 7.139 0.873 0.031 8.043

C2 835.26a

MO 869.26 4.07 872.03 0.841 0.04 872.91
TPA 869.26 4.07 921.48 0.841 0.04 922.36

WAM 869.26 4.07 814.53 0.841 0.04 815.41

C3 826.14a TPA 854.82 3.47 166.58 3.716 2.25 172.54

C4 1028.42a MO 1073.43 4.38 1000 92.399 4.66 1097.06

C5 1291.29b WAM 1359.62 5.28 5000 3.27 12.41 5015.71

C11 1042.11a MO 1053.83 1.12 1387.19 2002.81 0.12 3390.12

C12 819.56a

MO 815.24 -0.53 31.16 0.87 2.06 34.09
TPA 815.24 -0.53 29.56 0.869 2.06 32.08

WAM 815.24 -0.53 28.89 0.869 2.06 31.82

As shown, the proposed Adapted FMOP algorithm for VRP obtained better results for the C12 problem due to the 
best-known solution. In addition, the improved route is shown in detail in Table 3. If the results are compared according 
to gaps, it may be said that the average gap is 2.89. Furthermore, in addition to the average gap, the minimum gap 

aTaillard (1993) bMester and Bräysy (2005)
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except C12 is 1.12 for the C11 and the maximum gap is 4.38 for the C4. The gap of problems except the 12 problems 
varies between 1.12 and 5.28. Thus, the results indicate that the Adapted FMOP algorithm for VRP is able to find 
sufficient solutions. The average CPU time is 853.66 seconds (14.23 min) for the clustering phase, 175.75 seconds (2.9 
min) for the routing phase, and 1.98 seconds for the local search, and 1031.37 (17.19 min) for the total process. The 
computational times are reasonable for obtaining a solution for VRP.

Table 3. Detailed route for the problem C12

Distance of each route Nodes in each route
49.15 0 8 9 6 7 4 3 75 0

98.09 0 10 13 17 18 19 15 16 14 12 11 0

43.88 0 21 23 26 28 30 27 25 22 20 0

97.84 0 24 29 34 36 39 38 37 35 31 33 32 0

64.81 0 43 42 41 40 44 45 46 48 51 50 52 49 47 0

102.94 0 69 68 55 54 53 56 58 60 59 57 0

129.23 0 81 78 76 71 70 73 77 79 80 74 65 0

52.28 0 67 66 64 61 72 62 67 0

76.08 0 91 89 88 85 84 82 83 86 87 90 0

97.93 0 5 1 2 99 100 97 93 92 94 95 96 98 0

Total distance of each route 812.23

A comparison of results with other algorithms are is given in Table 4. The better results are shown in bold. The 
Adapted FMOP algorithm finds better solutions 6, 3, 4 and 3 times than the sweep algorithm, the Fisher and Jaikumar 
(1981) algorithm, the Bramel and Simchi-Levi (1995) algorithm, Baker and Sheasby’s (1999) method 2, respectively. 
Besides, the average gaps while comparing with the above algorithms are found as -5.42, 0.20, -1.22, 1.04, and 0.46, 
which show the competence of the Adapted FMOP algorithm.

Table 4. Comparison with other cluster-first route-second methods

Problem FMOP-
VRP Sweep Gap

Fisher 
and 

Jaikumar 
(1981)

Gap
Bramel 

and 
Smichi-

Levi (1995)
Gap

Baker and 
Sheasby 
method 1 

(1999)
Gap

Baker and 
Sheasby 
method 2 

(1999)
Gap

C1 537.34 532 1.00 524 2.55 524.6 2.43 524.61 2.43 524.61 2.43

C2 853.11 874 -2.39 857 -0.45 848.2 0.58 847.50 0.66 847.50 0.66

C3 838.54 851 -1.46 833 0.67 832.9 0.68 837.44 0.13 841.32 -0.33

C4 1073.43 1079 -0.52 1014 5.86 1088.6 -1.39 1053.50 1.89 1077.41 -0.37

C5 1335.08 1389 -3.88 1420 -5.98 1461.2 -8.63 1333.72 0.10 1336.49 -0.11

C11 1046.02 1266 -17.38 - - 1051.5 -0.52 - - - -

C12 812.23 937 -13.32 824 -1.43 826.1 -1.68 - - - -

Average -5.42 Average 0.20 Average -1.22 Average 1.04 Average 0.46

6. Real-world application for a firm in the construction sector
A firm from the construction sector in Turkey has customers in different cities. A routing problem for a day is 

solved with the proposed Adapted FMOP algorithm for VRP. The problem has 57 customers in 10 cities, and the 
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location of the depot is Eskisehir. The cities and demands of these customers are presented in Table 5. The capacity of 
the vehicles is 28.000 tons and 25 vehicles are required to serve the entire demand of the customers. 

The mathematical models are coded and solved by The GAMS CPLEX 9.0 and the local search is applied in Excel 
Visual Application.

Table 5. City and demand of customers

Customer number City Demand (tons) Customer number City Demand (tons)
1 Afyon 3864 30 Istanbul 15025

2 Ankara 209 31 Istanbul 14000

3 Ankara 66 32 Istanbul 14000

4 Ankara 1475 33 Istanbul 14000

5 Ankara 12268 34 Istanbul 14000

6 Ankara 12322 35 Istanbul 911

7 Ankara 6100 36 Istanbul 13089

8 Antalya 21554 37 Istanbul 14000

9 Antalya 450 38 Istanbul 15025

10 Antalya 7556 39 Istanbul 15025

11 Antalya 11211 40 Istanbul 7537

12 Antalya 5522 41 Istanbul 9026

13 Antalya 12478 42 Istanbul 2958

14 Istanbul 19585 43 Istanbul 11042

15 Istanbul 16000 44 Izmir 14000

16 Istanbul 15052 45 Kayseri 11677

17 Istanbul 7748 46 Kayseri 7689

18 Istanbul 14218 47 Kocaeli 17210

19 Istanbul 1061 48 Kocaeli 2178

20 Istanbul 10526 49 Kocaeli 6374

21 Istanbul 5553 50 Kocaeli 19436

22 Istanbul 15090 51 Kocaeli 14660

23 Istanbul 14000 52 Kocaeli 19000

24 Istanbul 14000 53 Kocaeli 24000

25 Istanbul 14000 54 Mugla 15398

26 Istanbul 14000 55 Mugla 16065

27 Istanbul 14000 56 Sakarya 17300

28 Istanbul 14000 57 Tekirdag 18662

29 Istanbul 14000

6.1 The clustering phase of the application

In the first phase of the proposed Adapted FMOP algorithm for VRP, ideal and anti-ideal values of the objectives 
should be achieved to obtain the membership functions of the objectives. The calculated ideal and anti-ideal values are 
listed in Table 6. The membership functions are given in equation (16) and equation (17) for the first objective and the 
second objective, respectively.
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Table 6. Ideal and anti-ideal values of objectives

Objective Ideal value Anti-ideal value

ᴢ1 3889 17274

ᴢ2 16952 5005

The fuzzy pay-off matrix is set as described in Table 7 by using membership functions, where x1 and x2 correspond 
to the ideal solutions of the first objective and the second objective, respectively.

(16)
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Table 7. Fuzzy pay-off matrix with membership functions

Person I strategies
Person II strategies

x1 x2

ᴢ1 1 0.968

ᴢ2 0.987 1

The FTZG with MS model is set as equation (18) using the values given in Table 7.

max v
subject to	 w1 + 0.987w2 > v
		  0.987w1 + w2 > v
		  2

1
1i

i
w

=

=∑		
		  wi > 0   Ɐi = 1,2

(18)

Table 8. Results of the fuzzy operators

Objectives
Fuzzy operators

MO TPA WMM WAM

ᴢ1, 4029 4029 4066 4029

ᴢ2 16952 16952 16952 16952
CPU-1 (seconds) 57.727 22.743 25.067 22.914
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1            if z1< 450507

0            if z1(x) > 17274

1            if z2< 16952

0            if z2(x) > 5005
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After solving the FTZG with MS model, the weights are obtained as 0.29 and 0.71 for the first objective and the 
second objective, respectively. The fuzzy multi-objective model given in equations (1)-(4) is solved using the weights. 
The values of the solutions and the CPU time that is required to solve the multi-objective model are presented in Table 8 
for each fuzzy operator.

After all of the fuzzy operators are found, the same solution is achieved, except for the weighted max-min model. 
While the weighted max-min model finds a great first objective compared to others, it finds the same value as the second 
objective. The CPU times of the operators are quite equal, except for the min operator that requires 2.5 times more CPU 
time than the other operators.

Clusters that are found by min operator, two-phase approach, weighted max-min model, and weighted additive 
model are given a cluster number and the seed customer of each cluster; in addition, the clusters are assigned customers 
to the seed customers, as described in Table 9 and Table 10.

Table 9. Clusters determined by MO, TPA, and WAM

Customer 
number

Seed 
customer

Assigned 
customers

Cluster 
number

Seed 
customer

Assigned 
customers

Cluster 
number

Seed 
customer

Assigned 
customers

Cluster 1 Ankara Istanbul Kayseri Cluster 10 Istanbul Istanbul Istanbul Cluster 18 Istanbul Istanbul

Cluster 2 Ankara Ankara Sakarya Cluster 11 Istanbul Istanbul Istanbul Cluster 19 Istanbul Istanbul Istanbul

Cluster 3 Ankara Ankara Kocaeli Cluster 12 Istanbul Istanbul Cluster 20 Istanbul Istanbul

Cluster 4 Ankara Istanbul Cluster 13 Istanbul Istanbul Cluster 21 Kayseri Kocaeli

Cluster 5 Antalya Antalya İzmir Cluster 14 Istanbul Istanbul Cluster 22 Kocaeli Kocaeli

Cluster 6 Antalya Afyon Mugla Cluster 15 Istanbul Istanbul Cluster 23 Kocaeli Kocaeli

Cluster 7 Antalya Muğla Cluster 16 Istanbul Istanbul Cluster 24 Kocaeli

Cluster 8 Antalya Antalya Cluster 17 Istanbul Istanbul Cluster 25 Tekirdag Istanbul

Cluster 9 Istanbul Istanbul

Table 10. Clusters that are determined by WMM

Customer 
number

Seed 
customer

Assigned 
customers

Cluster 
number

Seed 
customer

Assigned 
customers

Cluster 
number

Seed 
customer

Assigned 
customers

Cluster 1 Ankara Ankara Istanbul Cluster 10 Istanbul Istanbul Istanbul Cluster 18 Istanbul Istanbul

Cluster 2 Ankara Ankara Istanbul Cluster 11 Istanbul Istanbul Cluster 19 Istanbul Istanbul Istanbul

Cluster 3 Ankara Kayseri Kocaeli Cluster 12 Istanbul Istanbul Cluster 20 Kayseri Kocaeli

Cluster 4 Ankara Sakarya Cluster 13 Istanbul Istanbul Cluster 21 Kocaeli Kocaeli

Cluster 5 Antalya Antalya Antalya Cluster 14 Istanbul Istanbul Cluster 22 Kocaeli Kocaeli

Cluster 6 Antalya Afyon İzmir Cluster 15 Istanbul Istanbul Cluster 23 Kocaeli

Cluster 7 Antalya Mugla Cluster 16 Istanbul Istanbul Cluster 24 Muğla Antalya

Cluster 8 Istanbul Istanbul Cluster 17 Istanbul Istanbul Istanbul Cluster 25 Tekirdag Istanbul

Cluster 9 Istanbul Istanbul

6.2 The routing and local phases of the application

Each cluster is solved by the TSP integer programming model based on equations (16)-(20) and then the local 
search is applied. Table 11 shows the solution and CPU time for each fuzzy operator. All of the fuzzy operators find 
the same solution in the routing phase. The CPU times are quite equal, except for that of the two-phase approach that 
requires 1.5 times more CPU time than the other clusters. 
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Table 11. Total distance and CPU time after routing and local search phases

Fuzzy operator Solution of routing 
phase (km) CPU-Phase-2 Solution (km) CPU-Phase-3 Total CPU

MO 20374 1.375 20374 0.075 1432.727

TPA 20374 2.331 20374 0.064 2353.743

WMM 20374 1.566 20374 0.114 1591.067

WAM 20374 1.454 20374 0.067 1476.914

The local search does not improve the solution in the application although it is effective for the algorithm for the 
test problems. In that, the application problem has less variety in the customer city. All of the CPU times are quite equal 
for the local search. The CPU times for the proposed algorithm, min operator, weighted max-min model, and weighted 
additive model are found to be equal, whereas the two-phase approach requires 1.5 times more CPU time than the 
weighted max-min model and weighted additive model. The routes of the solution are presented in Table 12.

Table 12. Routes of the solution

Route number Route Distance (km)
1 Eskisehir (Depot) Istanbul (30) Ankara (2) Kayseri (45) Eskisehir (Depot) 1644

2 Eskisehir (Depot) Ankara (4) Ankara (7) Sakarya (56) Eskisehir (Depot) 720

3 Eskisehir (Depot) Ankara (3) Ankara (5) Kocaeli (51) Eskisehir (Depot) 794

4 Eskisehir (Depot) Istanbul (39) Ankara (6) Eskisehir (Depot) 1016

5 Eskisehir (Depot) Antalya (13) Antalya (9) İzmir (44) Eskisehir (Depot) 1282

6 Eskisehir (Depot) Afyon (1) Antalya (10) Mugla (54) Eskisehir (Depot) 1251

7 Eskisehir (Depot) Mugla (55) Antalya (11) Eskisehir (Depot) 1239

8 Eskisehir (Depot) Antalya (8) Antalya (12) Eskisehir (Depot) 848

9 Eskisehir (Depot) Istanbul (21) Istanbul (14) Eskisehir (Depot) 660

10 Eskisehir (Depot) Istanbul (41) Istanbul (42) Istanbul (15) Eskisehir (Depot) 660

11 Eskisehir (Depot) Istanbul (22) Istanbul (40) Istanbul (19) Eskisehir (Depot) 660

12 Eskisehir (Depot) Istanbul (33) Istanbul (24) Eskisehir (Depot) 660

13 Eskisehir (Depot) Istanbul (37) Istanbul (25) Eskisehir (Depot) 660

14 Eskisehir (Depot) Istanbul (26) Istanbul (23) Eskisehir (Depot) 660

15 Eskisehir (Depot) Istanbul (31) Istanbul (28) Eskisehir (Depot) 660

16 Eskisehir (Depot) Istanbul (32) Istanbul (29) Eskisehir (Depot) 660

17 Eskisehir (Depot) Istanbul (34) Istanbul (27) Eskisehir (Depot) 660

18 Eskisehir (Depot) Istanbul (36) Istanbul (18) Eskisehir (Depot) 660

19 Eskisehir (Depot) Istanbul (35) Istanbul (38) Istanbul (20) Eskisehir (Depot) 660

20 Eskisehir (Depot) Istanbul (43) Istanbul (16) Eskisehir (Depot) 660

21 Eskisehir (Depot) Istanbul (46) Kocaeli (52) Eskisehir (Depot) 1422

22 Eskisehir (Depot) Kocaeli (48) Kocaeli (47) Eskisehir (Depot) 438

23 Eskisehir (Depot) Kocaeli (50) Kocaeli (49) Eskisehir (Depot) 438

25 Eskisehir (Depot) Tekirdag (57) Istanbul (17) Eskisehir (Depot) 924

Total Distance (km) 20374
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As can be seen from the results, all customer demands are delivered with a traveling distance of 20374 km and by 
using 25 vehicles. The total CPU time is 39 min. at most. The time needed to find a solution is reasonable for a logistic 
planning manager compared to creating manually constructed routes. Besides CPU time, since the algorithm does not 
require additional parameters except the basic parameters of VRP, the logistic planning manager can apply the algorithm 
straightforwardly. Furthermore, in the clustering phase, the customers which are in sight of each other are grouped 
by solving FMOP models. Then, these clusters make it easy to generate routes for each vehicle since the number 
of customers is reduced for each vehicle. Thus, these clusters may be utilized in future planning such as delivery, 
marketing, new collaborations, etc. by the logistic planning manager of the company since the customers in each cluster 
are relatively nearby. 

7. Conclusion

In this study, the Adapted FMOP algorithm for VRP was introduced for solving NP-hard structure VRP. The 
algorithm was tested on problems available in the literature, and applied to solve a real-world problem. The Adapted 
FMOP algorithm for VRP has three phases: the clustering phase with two objective values, the routing phase solved 
by integer programming, and the local search phase for improving the solution. In addition, the clusters were obtained 
by solving the fuzzy multi-objective model with the weights obtained to solve the FTZG with MS model. After the 
clustering phase, the VRP was converted into the TSP for each cluster. 

The proposed algorithm was tested on problems presented by Christofides (1979), which represent benchmark 
problems (Yalcin and Erginel, 2012). The proposed algorithm generates routes with less transportation distance for one 
problem, and the average difference of the test problems is 4.26. Additionally, the CPU times required to solve the test 
problems are below 200 seconds for three of them, below 2000 seconds for two of them, and above 3000 seconds for 
two of them. Thus, it is concluded that the proposed algorithm is able to provide sufficient solutions within an acceptable 
amount of time. 

A real-world logistic problem of a ceramic factory in Turkey was solved using the Adapted FMOP algorithm for 
VRP. Twenty-five vehicles were required to set their routes. The total distance of the problem was found to be 20374 
km with all of the fuzzy operators. The total CPU times for the fuzzy operators was found to be very close to each other. 
Furthermore, the average CPU time is 1713.61 seconds, that is, 28.5 minutes, which is acceptable. These computational 
results represent that the Adapted FMOP algorithm for VRP outperforms for real-world problems. 

The main contributions of the Adapted FMOP algorithm for VRP are listed as follows: 
•	 considers more than one objective in the clustering phase,
•	 defines the weights of objectives using the FTZG with MS model that does not require an expert decision 

or equal scale, 
•	 constructs a fuzzy multi-objective model that maximizes the achievement level of each objective,
•	 only uses mathematical programming models while solving VRP in the clustering and routing 

phases,
•	 successfully solves a real-world problem. 
In further studies, other objectives can be considered in the fuzzy VRP model, for example, maximizing the used 

capacity ratio of vehicles, minimizing the number of vehicles, minimizing the cost of carbon emission, and so on. 
Additionally, the other variants of VRP models such as time windows, heterogeneous vehicles can be considered. 
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