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Abstract: This study proposes a heuristic inspection policy to address the existence of type I and II inspection errors. 
The deterioration process often shifts from an in-control state to an out-of-control state toward the end of a production 
lot, producing more nonconforming products. As a result, if the initial (late-produced) products in a production lot are 
chosen for inspection, the products identified as nonconforming (conforming) may need to be inspected repeatedly. The 
decision regarding the demarcation point between initial and late-produced products, their respective inspection rounds, 
and the production lot size must be made simultaneously to minimize the expected total cost per conforming product. 
This paper provides numerical examples to explore the effect of inspection errors on the optimal production lot size, 
inspection policy, and the associated cost.
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1. Introduction
Scholars have extensively studied the problem of economically controlling product quality in an imperfect 

manufacturing system. For example, higher production rates accelerate the deterioration of the production system, 
leading to machine failures and defective items (see Malik & Kim, 2020). Smaller batch sizes can reduce the number 
of nonconforming products when a deteriorating production system is used (see Djamaludin et al., 1994; Porteus, 1986; 
Rosenblatt & Lee, 1986; Salameh & Jaber, 2000; Wang & Sheu, 2003; Yeh & Lo, 1998). In contrast to using small batch 
sizes to control the number of defective products, Raz et al. (2000) proposed a dynamic inspection method to control 
quality and minimize the quality control cost. Wang (2007) further studied the impact of inspection errors on inspection 
plans.

Imperfections in the production process have led to the inability to meet the demand for high-quality products 
at the production stage. However, after defective products are eliminated or reworked at the end of the inspection 
process, customers will be satisfied with product quality (see Tuan et al., 2020). When product inspection is considered 
for a completed lot at the end of production, performing a 100% inspection (see Jaber et al., 2008) can eliminate all 
nonconforming products when the inspection is perfect. However, 100% inspection may be expensive (see Muhammad, 
2011) and prone to inspectors making inspection errors. Consequently, production and inspection systems may need 
further improvement (e.g., Muhammad, 2016; Pal & Mahapatra, 2017; Yoo et al., 2009). As such, regarding cost, using 
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a partial inspection policy is an alternate, more economical approach to controlling product quality. For example, using 
the lot sizing model proposed by Porteus (1986) and Yeh et al. (2000) (see Hu & Zong, 2009; Shih & Wang, 2016; 
Wang, 2004; Wang & Meng, 2009; Wang & Sheu, 2001; Wang et al., 2004; Yeh & Chen, 2006), it was considered 
that only the products produced toward the end of the production lot should be inspected since more nonconforming 
products are likely to be produced during this period in a deteriorating production system. Wang et al. (2004) further 
extended Wang and Sheu’s (2001) production and inspection model to involve type I and II inspection errors, with 
shortage being neglected. Hsu and Hsu (2013) investigated the effect of inspection errors on shortage. However, for the 
initial part of the production run, which comprises uninspected products, nonconforming products will result in external 
quality costs, e.g., warranty/return costs and loss of goodwill (see Sarkar & Saren, 2016). The present study suggests 
that initial and late-produced products in a production lot undergo different inspection strategies. That is, the focus 
should be on inspecting products that have been inspected to be nonconforming (conforming) when they are part of the 
front (rear) segment of the production lot to economically diminish the number of wrongly accepted (rejected) products.

The remainder of this paper is organized as follows: our proposed production and inspection model with type I 
and II errors is outlined in Section 2. In Section 3, a no inspection policy is investigated. In Section 4, an illustrative 
numerical example is given to explore the effect of inspection errors on the optimal solution. In Section 5, a conclusion 
is drawn.

2. Production and inspection model
The following notations are used to develop our proposed production and inspection model with two types of 

inspection errors.

cI : inspection cost for identifying the quality status of a product ($/product)
cR : unit restoration cost for the process ($)
cm : manufacturing cost per product ($/product)
cs : joint cost of the process setup and maintenance ($)
D : market demand of the products per unit time
ch : inventory holding cost for a product per unit time
α : the probability that inspecting a conforming product to be nonconforming (i.e., type I error)
β : the probability that inspecting a nonconforming product to be conforming (i.e., type II error)
r : revenue from accepting a conforming product ($/product)
ca : cost of accepting a nonconforming product ($/product)
cr : cost of rejecting a conforming product ($/product)

In this study, we adopt the imperfect process considered by Wang and Sheu (2003), which can be addressed as 
follows. Assume that the process is initially setup and maintained in an as-good-as-new and in-control state. Each time 
when a product is produced, it may randomly shift from an IN state to an OUT state. Once the process shifts into an 
OUT state, it stays there until the end of the production lot. Let jP  be the probability that the process is still in an IN 
state after producing j products since the last setup. Then, the probability that the process is in an OUT state at the end 
of a production lot with size of N is given by 1 NP− (e.g., see Wang, 2005). Thus, there is an expected restoration cost 
of R (1 )Nc P− to bring the process from an OUT state back to an IN state. The conforming rate for a production lot with 
size of N (denoted by ρ(N)) is given by (see Wang & Sheu, 2003)

                                              
( ) ( ) ( ) ( ){ }1 1 2 1 1

1 1 1 ,N
j j j NN j N j P P P

N
ρ θ θ θ= −= ∑ − + − + − +                                            

(1)

where θ1 and θ2 are the probability that a product will be conforming if it is produced in an IN state and OUT state, 
respectively.

This study proposes a heuristic inspection policy to address the situation created by inspection errors for a 
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production lot based on the following process. First, note that most conforming (nonconforming) products are 
produced during a production lot’s initial (late-produced) stage. Given a production lot with a size of N > 0 for the first 
n (the last N – n) products, if a full inspection is performed in the first inspection round, then products identified as 
nonconforming (conforming) will be inspected again in the next inspection round, i.e., the second inspection round. The 
above inspection procedure will be repeatedly performed and terminated as soon as the next inspection round has been 
evaluated. We found that the number of conforming (nonconforming) products that are incorrectly rejected (accepted) 
cannot be significantly reduced (refer to Figure 1 for the inspection process).  

This paper also explores conditions for no inspection to avoid the enormous costs incurred by a full inspection. 
Note the two extreme cases: (i) when n = 0, there is a strict inspection strategy. That is, when a product has been 
identified to conform, it would be inspected again. However, if it has been identified as nonconforming, it should be 
disposed of directly. On the other hand, (ii) when n = N, there is a loose inspection strategy. That is, a conforming 
product identified by inspection should be directly accepted. Otherwise, it would be inspected again. Our proposed 
inspection model balances these two extreme inspection policies.

                             

Figure 1. The proposed inspection decisions and outcomes 
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Table 1. The effect of our proposed inspection policy on the first n products

After the k-th inspection round, the expected number of the inspected 
products identified to be

Before the k-th inspection round Nonconforming Conforming

Conforming/Nonconforming

1st nρ(n) αnρ(n)
n(1 – ρ(n))(1 – β)

(1 – α)nρ(n)

n(1 – ρ(n)) n(1 – ρ(n))β

2nd αnρ(n)
n(1 – ρ(n))(1 – β)

α2nρ(n) (1 – α)αnρ(n)

n(1 – ρ(n))(1 – β)2 n(1 – ρ(n))β(1 – β)

3rd

k-th αk–1nρ(n) αknρ(n) (1 – α)αk–1 nρ(n)

n(1 – ρ(n))(1 – β)k–1 n(1 – ρ(n))(1 – β)k n(1 – ρ(n))β(1 – β)k–1

For the first n products in a production lot with size of N, the expected number of conforming and nonconforming 
products are given by nρ(n) and n(1 – ρ(n)), respectively. If the first n products are chosen to be inspected, then 
a product should be inspected at the k-th round of inspection if it has been found to be nonconforming at the  
k – 1-th inspection round for k = 2, 3,....

After k inspection rounds, the number of conforming products that will be correctly accepted is given by (refer to 
Table 1)

                                                             
1

1

( ) 0,
( , ) ( )(1 ) , 1, 2, ,k j

j

n n , k
n k n n k   

ρ
ϑ ρ α α −

=

=
=  − Σ = ⋅⋅⋅                                                         (2)

where k = 0 is the case of no inspection. When no inspection is considered, the cost of incorrect acceptance and rejection 
for the first n products are given by can(1 – ρ(n)) and zero, respectively. On the other hand, if inspection is considered, 
then after the k-th inspection round, the resulting expected total related quality control cost, including the costs of 
inspection, incorrect reject, and acceptance, becomes (refer to Table 1):

                  { }1 1 1
I 1 1 I r a 1( ) (1 ( )) (1 ) ( ) (1 ( ))  (1 ) .k j k j k k j

j j jnc n n n n c n n c c n nρ α ρ β ρ α ρ β β− − −
= = =+ Σ + − Σ − + + − Σ −              (3)

After the k-th inspection round is performed for the first, if performing the k + 1-th inspection round cannot 
significantly reduce the number of conforming products incorrectly rejected, then one should cease inspection at the 
k-th inspection round. Thus, an upper boundary for k is regarded as the smallest k that satisfies the following inequality: 
nρ(n)αk – nρ(n)αk+1 ≤ ε1, where ε1 is a pre-determined small positive value, or equivalently, 

                                                               
1

1( ; , ) In / In( ) .
(1 ) ( )

k n
n n
ε

α ε α
α ρ

  
=   −                                                              

(4)

On the other hand, Table 2 shows that after the i-th inspection round, the number of conforming products that 
would be correctly accepted is given by

                                                                 (1 ) ( ( ) ( )) for 0,  1,  2,  ...,i N N n n iα ρ ρ− − =                                                              (5)

where i = 0 represents the case of no inspection. When i inspection round is performed, the resulting expected total 
quality related control cost for products n + 1 to N – n is given by ca[N – n – (Nρ(N) – nρ(n))] for i = 0 and
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( ) ( ){ } ( ) ( )1 1 1
I I 1 1 r 0 a( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) for 1,  2,  ...,i j i j i j i

j j jN n c c N N n n N n N N n n c N N n n c N n N N n n iρ ρ α ρ ρ β α ρ ρ α ρ ρ β− − −
= = =− + − Σ − + − − − Σ + − Σ − + − − − =      

( ) ( ){ } ( ) ( )1 1 1
I I 1 1 r 0 a( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) for 1,  2,  ...,i j i j i j i

j j jN n c c N N n n N n N N n n c N N n n c N n N N n n iρ ρ α ρ ρ β α ρ ρ α ρ ρ β− − −
= = =− + − Σ − + − − − Σ + − Σ − + − − − =                                                                                                                     (6)

respectively.

Table 2. The effect of our proposed inspection policy on the last N – n products

After the i-th inspection round, the expected number of the inspected products identified 
to be

Before the i-th inspection round Nonconforming Conforming

Conforming/Nonconforming

1st Nρ(N) – nρ(n) α(Nρ(N) – nρ(n)) (1 – α)(Nρ(N) – nρ(n))
[N – n – (Nρ(N) – nρ(n))]βN – n – (Nρ(N) – nρ(n)) [N – n – (Nρ(N) – nρ(n))](1 – β)

2nd (1 – α)(Nρ(N) – nρ(n))
[N – n – (Nρ(N) – nρ(n))]β

α(1 – α)(Nρ(N) – nρ(n)) (1 – α)2(Nρ(N) – nρ(n))

[N – n – (Nρ(N) – nρ(n))]β(1 – β) [N – n – (Nρ(N) – nρ(n))]β2

3rd

i-th (1 – α)i-1(Nρ(N) – nρ(n)) α(1 – α)i–1(Nρ(N) – nρ(n)) (1 – α)i(Nρ(N) – nρ(n))

[N – n – (Nρ(N) – nρ(n))]βi–1 [N – n – (Nρ(N) – nρ(n))]βi–1(1 – β) [N – n – (Nρ(N) – nρ(n))]βi

After the i-th inspection round is performed for the last N – n products, if performing the i + 1-th inspection 
round cannot significantly reduce the number of nonconforming products incorrectly accepted, then one should cease 
inspection at the i-th inspection round. Having used a similar approach to determine k, one can set an upper bound of i 
as ī, where ī is the smallest integer i that satisfies the following inequality:
[N – n – (Nρ(N) – nρ(n))]βi – [N – n – (Nρ(N) – nρ(n))]βi+1 ≤ ε2, where ε2 is a small positive value. Alternatively,

                                        ( ) ( )
2

2( , ; , ) In / In( ) .
( ) ( ) 1

i N n
N n N N n n

ε
β ε β

ρ ρ β

  
 =   − − − −                                               (7)

Consider a production lot with size of N with an inspection policy, (n, k, i), where N ≥ n. Then, the expected 
number of conforming products correctly accepted (denoted by ϕ(N, n, k, i)) can be obtained by adding equation (2) and 
equation (5), which gives

                                                         ( )( , , , ) ( , ) (1 ) ( ) ( ) ,iN n k i n k N N n nφ ϑ α ρ ρ= + − −                                                    (8)

for k = 0, 1, 2, …, k and i = 0, 1, 2, …, ī, where ϑ(n, k) is given in equation (2). The expected total revenue is given by 
rϕ(N, n, k, i).

In addition, adding equation (3) and equation (6) gives the expected total quality control related cost (denoted by 
ψ(N, n, k, i)), which is comprised of the costs of inspection, incorrect reject and acceptance:

       

{ } ( ) ( ){ } ( ) ( )1 1 1 1 1 1
I 1 1 I r a 1 I 1 1 r 0 a( , , , ) ( ) (1 ( )) (1 ) ( ) (1 ( )) (1 ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ,k j k j k k j i j i j i j i

j j j j j jN n k i Nc n n n n c n n c c n n c N N n n N n N N n n c N N n n c N n N N n nψ ρ α ρ β ρ α ρ β β ρ ρ α ρ ρ β α ρ ρ α ρ ρ β− − − − − −
= = = = = == + ∑ + − ∑ − + + − ∑ − + − ∑ − + − − − ∑ + − ∑ − + − − −      

{ } ( ) ( ){ } ( ) ( )1 1 1 1 1 1
I 1 1 I r a 1 I 1 1 r 0 a( , , , ) ( ) (1 ( )) (1 ) ( ) (1 ( )) (1 ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ,k j k j k k j i j i j i j i

j j j j j jN n k i Nc n n n n c n n c c n n c N N n n N n N N n n c N N n n c N n N N n nψ ρ α ρ β ρ α ρ β β ρ ρ α ρ ρ β α ρ ρ α ρ ρ β− − − − − −
= = = = = == + ∑ + − ∑ − + + − ∑ − + − ∑ − + − − − ∑ + − ∑ − + − − −      

{ } ( ) ( ){ } ( ) ( )1 1 1 1 1 1
I 1 1 I r a 1 I 1 1 r 0 a( , , , ) ( ) (1 ( )) (1 ) ( ) (1 ( )) (1 ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ,k j k j k k j i j i j i j i

j j j j j jN n k i Nc n n n n c n n c c n n c N N n n N n N N n n c N N n n c N n N N n nψ ρ α ρ β ρ α ρ β β ρ ρ α ρ ρ β α ρ ρ α ρ ρ β− − − − − −
= = = = = == + ∑ + − ∑ − + + − ∑ − + − ∑ − + − − − ∑ + − ∑ − + − − −         (9)
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for k = 0, 1, 2, …, k and i = 0, 1, 2, …, ī. Consequently, the expected total cost (TC) per conforming product (denoted 
by TC(N, n, k, i)), which includes the costs of process setup/maintenance, restoration, quality control, manufacturing, 
revenue, and inventory holding:

                                  
S R m

h
(1 ) ( , , , )

TC( , , , ) ( , , , ) / (2 ),
( , , , )

Nc c P N n k i Nc
N n k i r c N n k i D

N n k i
ψ

φ
φ

+ − + +
= + +

                            
(10)

where ϕ(N, n, k, i) and ψ(N, n, k, i), are represented by equation (8) and equation (9), respectively.
The main objective of this paper is to find an optimal production lot size N* and its associated optimal inspection 

policy (n*, k*, i*) to minimize the cost function given in equation (10). Since it is not easy to obtain a closed-form 
solution for (N*, n*, k*, i*), a searching procedure was conducted as follows:

A procedure for (N*, n*, k*, i*):
Step 1. For a given (N, n), where n ≤ N.
Step 2. Compute TC(N, n, k, i) for each (k, i), where k = 0, 1, 2, …, k and i = 0, 1, 2,…, ī.
Step 3. Varying (N, n) and go to Step 2 until an optimal (N, n, k, i) that minimizes TC(N, n, k, i) is obtained.

3. No inspection policy
In this section, the conditions for a commonly used inspection policy, no inspection, are investigated. It is obvious 

to see that the first n (last N – n) products are not worthy of performing k (i) inspection round if the following inequality 
holds (refer to equation (3)):

                              

( )

( ) ( )

( ) ( )

a

I I r

a

1 ( ) ( )
1 1

                      ( ) 1 ( ) ( )
1

                       1 ( ) (1 1 ) ( )(1 ).

kk
k

k k

c n n rn n

nc n n n n c n n c

c n n rn n

ρ ρ

β βα αρ ρ ρ α
α β

ρ β ρ α

− −
 − − −− ≤ + + − + 

−  
+ − − − − −

Arranging the last equation gives

                                            

( ) ( )

( ) ( )
( )

a I

r a I

1 1
1 1

.
1 1

1
1

k
k

kk
kk k

c c

n

c c r c

β β
β

β
ρ

β βα αα β α
α β

 − − −
 − − +
 
  ≤

 − − −−
+ − + + − 

−                                          
(11)

On the other hand, for the last N – n products, let ( ) ( ) ( )
, ,

N N n n
N n

N n
ρ ρ

λ
−

=
−

 then, no inspection is more attractive 

than performing i inspection round if the following inequality holds (refer to equation (6)):

                 

( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

a

I I r

a

1 , ,

1 1
, 1 , , 1 1

1

1 , 1 , .

i i
i

ii

c N n r N n

c c N n N n c N n

c N n r N n

λ λ

α α β βλ λ λ α
α β

λ β α λ

− −  
 − − − − ≤ + + − + − −    −  

+ − − −  
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The last equation can be further arranged as follows:

                                

( )

( ) ( )( ) ( )( ) ( )

a I

I
r a I

1 1
1 ( , ).

11 1 1 1 1 1 1
1

i

i
i i i

c c
N n

cr c c c

β β
β λ

βα α α α β
α β

−
− −  − ≤

− − − + − − − + − − + − −    −                           
(12)

As a result, if equation (11) and equation (12) are satisfied for k = 0, 1, 2, …, k and i = 0, 1, 2, …, ī, respectively, 
then no inspection is optimal. In this case, the cost function of no inspection can be obtained by the following formula 
(refer to Tables 1 and 2):

                                    
( ) ( ) ( )( )

( ) ( ) ( )s R a m
no h

1 1
TC / 2 ,Nc c P c N N Nc

N r c N N D
N N

ρ
ρ

ρ

+ − + − +
= − +

                              
(13)

where ρ(N) is given in equation (1). Using the inequality of arithmetic and geometric means gives a lower boundary for 
the no inspection cost:

                                                
( ) ( ) ( )( )s R a m

no
h

1 1
TC  2 .

2 /
Nc c P c N N Nc

N r
D c

ρ+ − + − +
≥ − +

4. Numerical examples
In this numerical section, an illustrated example is given by using the process reliability j

jP q
γ

=  (see Nakagawa 
& Osaki, 1975) to investigate the effect of inspection errors on the optimal production lot size and inspection policy 
with the following nominal values: q = 0.97, γ = 1.05, θ1 = 0.92, θ2 = 0.07, ε1 = ε2 = 0.05, α = 0.06, β = 0.04, cS = 60,  
cR = 5.5, cm = 2.5, cI = 1.2, r = -12, ca = 2.5, cr = 12, ch = 3.5 and D = 195.

When the production rate goes to infinity, the classical economical production quantity (EPQ) can be obtained 
as S h2 / 81.76.c D c = Furthermore, when the imperfect process quality is considered without product inspection, one 
searches N over [ ]1,1.83 EPQ 150× ≈  to minimize the expected total cost per conforming product given in equation (13). 
In this case, one obtains TCno(N

* = 21) = -0.53549. When inspection errors are involved, we can apply our proposed 
solution procedure for (N*, n*, k*, i*) with the upper bounds of k  and ī, which are given by equation (4) and equation 
(7), respectively. This gives N* = 26, n* = 26, k* = 2 and i* = 0, and TC(N*, n*, k*, i*) = -1.67905 (see Figure 2), where the 
total quality related control cost takes up 11.4% of the total cost (see Table 3). This suggests that the optimal production 
lot size is located between the optimal lot size for no inspection (21), and the classical EPQ (81.76). Furthermore, 100% 
inspection is required, and for those products that have been inspected to be nonconforming, this means they should be 
inspected one more time. The benefit of adopting our proposed production and inspection model can be evaluated in 
terms of the cost improvement percentage (Imp.%) by comparing this with the case where there is no inspection, which 

is computed by 
( ) ( )

( )
* * * * *

no

*
no

21 TC , , ,
  100% 213.55%.

21

TC N N n k i

TC N

= −
× =

=
On the other hand, for a larger production batch 

size, e.g., N* = 249, one has n* = 41, k* = 2 and i* = 1 with a resulting cost of 14.70056. This shows that the products in 
the initial part of the production run (i.e., products 1 to 41) and in the rear part of the production run (i.e., products 42 
to 249) requires two rounds and one round of inspection, respectively, in order to diminish the number of conforming 
(nonconforming) products that would be wrongly rejected (accepted). This is different from the inspection policy 
proposed by other authors such as Wang et al. (2004) and Wang (2005), where inspection only focuses on the late-
produced products of a production lot.
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Table 3. The cost distribution for the optimal solution

Cost/Revenue Cost Revenue %

cS 60 40.84%

cR(1 – qN) 3.3344 2.27%

Ncm 65 44.25%

rϕ(N, n, k, i) -170.8 100%

ψ(N, n, k, i) 16.74906 11.40%

ch(ϕ(N, n, k, i))2/(2D) 1.8181 1.24%

-23.8987

                                            

Figure 2. The cost changes for different values of n when N = 26

To determine the effect of inspection errors on the optimal solution, the type I and type II inspection errors were 
varied, α and β, from zero to 0.4 with the other parameter values fixed, and their results are summarized in Table 4 and 5, 
respectively.

From Table 4, we can make the following observations: when α increases, both the production lot size and Imp.% 
are non-increasing, and the resulting cost is non-decreasing. Furthermore, if α = 0 (with β = 0.4), then all products 
ought to be inspected once. For 0.02 ≤ α ≤ 0.36, all products should be inspected and once a product has been found 
to be nonconforming, it should be inspected again. The number of inspection rounds increases with the value of α. 
Nevertheless, when the type I error is overly large (i.e., α ≥ 0.38), the no inspection approach is attractive.

From Table 5, as β increases, the Imp.% decreases. In addition, full inspection is always optimal, and both the 
production batch size and inspection rounds are non-increasing as β increases. Note that no inspection is not attractive 
even for a larger type II error is up to 0.4.
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Table 4. The effect of α on the optimal solution

α N* n* k* i* TC Imp.%

0 27 0 0 1 -1.89097 253.13%

0.02 26 26 2 0 -1.78868 234.03%

0.04 26 26 2 0 -1.73795 224.55%

0.06 26 26 2 0 -1.67906 213.55%

0.08 26 26 2 0 -1.61180 200.99%

0.1 26 26 3 0 -1.55158 189.75%

0.12 26 26 3 0 -1.49683 179.52%

0.14 26 26 3 0 -1.43748 168.44%

0.16 25 25 3 0 -1.37353 156.50%

0.18 25 25 3 0 -1.30397 143.51%

0.2 25 25 3 0 -1.22806 129.33%

0.22 25 25 4 0 -1.16028 116.68%

0.24 25 25 4 0 -1.08790 103.16%

0.26 25 25 4 0 -1.00975 88.57%

0.28 25 25 4 0 -0.92514 72.77%

0.3 25 25 4 0 -0.83330 55.61%

0.32 24 24 5 0 -0.74432 39.00%

0.34 24 24 5 0 -0.65056 21.49%

0.36 24 24 5 0 -0.54892 2.51%

0.38 21 0 0 0 -0.53549 0.00%

0.4 21 0 0 0 -0.53549 0.00%
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Table 5. The effect of β on the optimal solution

β N* n* k* i* TC Imp.%

0 27 27 3 0 -1.82758 241.29%

0.02 26 26 2 0 -1.73883 224.72%

0.04 26 26 2 0 -1.67906 213.56%

0.06 26 26 2 0 -1.62051 202.62%

0.08 26 26 2 0 -1.56320 191.92%

0.1 25 25 2 0 -1.50849 181.70%

0.12 25 25 2 0 -1.45561 171.83%

0.14 25 25 2 0 -1.40393 162.18%

0.16 25 25 2 0 -1.35343 152.75%

0.18 24 24 2 0 -1.30417 143.55%

0.2 24 24 2 0 -1.25783 134.89%

0.22 24 24 2 0 -1.21264 126.45%

0.24 24 24 2 0 -1.16859 118.23%

0.26 24 24 2 0 -1.12568 110.21%

0.28 24 24 2 0 -1.08392 102.42%

0.3 24 24 2 0 -1.04330 94.83%

0.32 23 23 2 0 -1.00529 87.73%

0.34 23 23 2 0 -0.96843 80.85%

0.36 23 23 2 0 -0.93267 74.17%

0.38 23 23 2 0 -0.89800 67.70%

0.4 23 23 2 0 -0.86444 61.43%

When the process quality q increases from 0.75 to 0.99, then N* increases with q , and n* = N*, k* = 2 and i* = 0. 
This means that a higher process reliability will allow a larger production lot size since it produces fewer nonconforming 
products. In addition, the associated cost, TC(N*, n*, k* = 2, i* = 0), decreases with the increase in q  (see Figure 3) as 
expected. Note that only when the process reliability is good enough (i.e., q  ≥ 0.96), one has positive revenue.
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Figure 3. The effect of q on the optimal solution

5. Conclusion
When one attempts to determine the optimal production lot size from an imperfect process to achieve a 

minimization of costs or a maximization of profit, it is necessary to consider how to balance the costs of the various 
parts of the process, namely, setup/maintenance, production, quality control, and inventory. However, an optimal quality 
control policy is not easy to establish, especially when the two types of inspection errors exist. This is because type 
I inspection error will result in the rejection of conforming products, and type II error will result in nonconforming 
products being released onto the market, which will incur, for example, warranty costs (e.g., see Sarkar & Saren, 2016). 
In this paper, we propose a heuristic inspection policy by exploring the propensities of a deteriorating process, namely, 
one that it has a higher chance of shifting from an IN state to an OUT state towards the end of a production lot and thus 
begin to produce more nonconforming products from that point on. The aim of our inspection policy is to determine the 
point in the profit of the production lot where products prior to (after) the boundary point should be inspected several 
times if, on inspection, they are found to be nonconforming (conforming). 

A numerical example is used to illustrate how it is possible to coordinate the production lot size and inspection 
policy to achieve a reduced cost when using our proposed production and inspection policy. Specifically, a production 
lot size larger than the case for no inspection is suggested. However, if the type I inspection error rate is too large, then 
no inspection is optimal. In such a case, a decision regarding investment in quality control (e.g., see Yoo et al., 2012) 
needs to be made with the aim of improving profits, or equivalently, reducing costs. 

Future research issues associated with our proposed inspection policy are as follows: firstly, the effect that learning 
(e.g., see Jaber et al., 2008) has on reducing the probability of an inspection error occurring. Secondly, how the use 
of information obtained from the inspection of earlier products can facilitate decisions regarding optimal production 
lot size (e.g., see Shih et al., 2018). Thirdly, how the use of a multistage production system (e.g., Ben-Daya & Rahim, 
2003) affects the optimal production lot size at each stage of production.
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