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Abstract: The present paper for the first time it is investigated the generation and formation of amplitude-type vortices,
propagating in single-mode optical fibers with step-index profile under the influences of third-order dispersion and self-
steepening effect or so called dispersion of nonlinearity of the medium. The main model includes the vector nonlinear
amplitude equation, fromwhich a system of two scalar partial differential equations is derived. They describe the evolution
of the x and y components of the vector amplitude function A⃗ of an optical pulse under the influences of these higher order
nonlinear and dispersive phenomena. New exact analytical solutions of the resulting system of equations were obtained
in the form of optical vortices. They have amplitude type singularity and they are observed as ring structures in the
components of the laser pulses. Numerical simulations of the found solutions are performed. It is shown that the vortex
parameter m is related to the number of these ring structures. Significant depolarization of the vector electric field in the
spot of the laser radiation is registered.
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1. Introduction
Vortex structures are optical beams or pulses that possess a singularity in the amplitude or phase. Normally, they are

observed out of the laser resonator. Vortices are obtained by optical masks and computer-synthesized holograms [1-6].
Such structures in light beams can be described by the well-known 2D Leontovich equation in scalar form [7-8]. Laser
vortex structures are characterized by spiral phase allocation or angular dependence of the electric field.

In the last few decades, the author has made remarkable progress in researching the formation and propagation of
different kinds of laser vortices [9-11]. The peculiarities of their evolution open up new possibilities for their potential
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application in several modern technologies, such as quantum information transfer, data encryption, high-resolution laser
microscopy, optical tweezers, optical vortex trapping, and many others [12-17]. Their evolution in various waveguides
is practically studied in [18-21]. Optical vortices with ring structures in the components of the electric field were found
in [22]. In recent years, the study of laser vortices, characterized by amplitude type singularities, has been quite relevant.
Such kinds of vortices were newly reported in [23]. It is characteristic of them that they are observed as concentric
circles in the laser pulse components. These light rings are due to the modulations in the amplitude. Their dynamics in
single-mode fibers with step-index profiles were studied analytically for the first time in the frames of the vector nonlinear
amplitude equation (NAE) by authors in [24]. This equation was reduced to a system of two partial differential equations,
describing the components of the vector amplitude function. Here, it is important to mention that these laser circles can
be seen only in the amplitude’s components. In the spot of the optical pulse, the light rings are not noticeable, because the
maxima of one component coincide with the minima of the other. In this way, compensation in their rotation is realized.
The presence of amplitude type vortices is registered by the diagram, visualizing the orientation of the vector electric field
of the pulses.

On the other hand, the advances in the investigations of ultra-short high-intensity laser pulses and their increasing use
in modern photonic technologies necessitate the study of the effects that accompany the evolution of these wave packages.
It is well-known that phase-modulated optical pulses or those in the femtosecond and attosecond regions are characterized
by a broad-band spectrum for which ∆λ ≈ λ0 (λ0 is the carrier wavelength, ∆λ is the initial bandwidth of the pulse). For
such optical pulses, it is necessary to take into account higher order nonlinear and dispersive effects such as third-order
dispersion (TOD) and self-steepening effect or so called dispersion of nonlinearity (DN). In the femtosecond region, even
when the group velocity dispersion (GVD) is nonzero, TOD needs to be considered. The influences of GVD and TOD
on the optical pulse result in asymmetry in its shape. Oscillatory structures can be seen on one of its edges depending
on the sign of TOD [25]. Near the zero-dispersion wavelength, these oscillations become deeper and the intensity drops
to zero. The propagation of ultra-short laser pulses in optical fibers may be accompanied by the effect of dispersion of
nonlinearity. This is a higher-order nonlinear phenomenon that arises from the dependence of the pulse’s group velocity
on its intensity. That leads to temporal and spectral changes in light pulses and can generate so called optical shock waves
in waveguides with low losses [26-29]. These two effects can seriously affect the evolution of ultra-short laser pulses
in single-mode optical fibers. Similar effects have been studied analytically in the case of the formation and evolution
of optical solitons in various media [30-35]. This convinced us that it is necessary to take into account higher orders of
dispersion and nonlinearity in the case of laser vortex structures propagating in single-mode optical fibers.

During our analytical investigations, we chose to work with the more general vector NAE, which has a number
of advantages over the standard nonlinear Schrödinger equation (NSE) [36]. It differs from NSE with two terms that
depend on the initial pulse duration (T0). As a result, NAE can be used for characterizing the evolution of long, as well
as ultra-short laser pulses. In the present case, NAE includes additional parameters responsible for TOD and DN.

The main idea of the current paper is to find new exact analytical solutions for the vector NAE, presenting the
peculiarities in the dynamics of vortex structures in optical fibers with step-index profiles under the influences of third-
order dispersion and self-steepening effect. The found solutions are characterized by amplitude-type singularity. Vortices
are observed in the form of ring structures in the components of the laser pulses. It is shown that the vortex parameter m is
related to the number of these laser circles. Parameters connected with nonlinearity are included in the derived expression
for the vortex parameter m. Therefore, they influence the number of ring structures. It turns out that the second and
third-order dispersion changes the phase of the components of the optical pulse. It does not directly affect the formation
of the optical vortex. Significant depolarization of the vector electric field in the spot of the laser radiation is registered
in the presented figures.

The rest of this paper is structured as such. Section 2 presents the main mathematical model on which the paper is
based. The analytical solution of the system of nonlinear amplitude equations is presented in detail and the corresponding
solutions in the form of optical vortices are derived. In Section 3, several figures are shown, made through numerical
simulations based on the obtained analytical solutions. Finally, a few concluding words are noted in Section 4.
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2. Main equation
The evolution of laser vortex in single-mode fiber with step-index profile and anomalous dispersion, under the

influences of TOD and DN is given by the following equation in vector form [25, 36]:
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The equation (1) A⃗ is the vector amplitude function and ∆⊥ is the transverse Laplace operator. The number of
oscillations of the electric field at level l/e of the amplitude function’s maximum is presented by the constant α, β is
connected with the second-order dispersion of the medium, γ is related to the Kerr-type nonlinearity of the waveguide, σ
characterizes third-order dispersion and s is the self-steepening parameter. In the expressions above A0 and T0 stand for
the initial amplitude function and initial time duration of the pulse, k0 is the wave number, k′′ and k′′′ are second and third
derivatives of the wave number, z0 and r⊥ are respectively the initial longitudinal and transverse sizes of the laser pulse,
vgr is the group velocity, n0 and n2 present the linear and nonlinear refractive index of the waveguide, χ(3) is the dielectric
susceptibility of the medium, ω0 is the carrier frequency, c is constant, t is time and x′, y′, z′ are Cartesian coordinates.
The vector amplitude function of the laser pulse is of the kind A⃗ = (Ax(x, y, ξ , τ), Ay(x, y, ξ , τ), 0). Having in mind
the geometry of the optical fiber, we can go from local time coordinate system to cylindrical coordinates:

x = r cosθ , y = r sinθ ,

r =
√

x2 + y2, θ = arctan
(y

x

)
. (3)

After some calculations, from the basic equation (1) we derive the following system of scalar partial differential
equations, describing the components Ax and Ay of the vector field. The equations are presented in polar coordinates.
They give the features in the dynamics of ultra-short laser pulses in single-mode optical fibers. The system of equations
is in the form:
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As a next step in our theoretical model, we will use the method of separation of variables to transform the components
of the vector amplitude functionAx and Ay. We are making the assumption that the system of equations (4) and (5) supports
solutions for the components Ax and Ay of the kind:

Ax(r, θ , ξ , τ) = TxPx(r, θ)exp [iΨx(ξ , τ)] ,

Av(r, θ , ξ , τ) = TvPv(r, θ)exp [iΨv(ξ , τ)] , (6)

where Ψx(ξ , τ) = Ψy(ξ , τ) = aτ + bξ is the generalized phase. In this expression a and b are constants. We find the
derivatives of (6) and we substitute them in the system of equations (4) and (5). Thus, we obtain the following two
partial differential equations of third order and third degree for the four unknown functions (Px, Py, Tx and Ty) of three
independent variables τ, r and θ :
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where T ′ and T ′′ are denoted the corresponding ordinary derivatives with respect to the variable τ . In a number of papers
[37-39], it has been shown that in the one-dimensional scalar case for a medium with anomalous dispersion, equation (1)
has a soliton solution A = A(ξ , τ) = T (τ)exp[iψ(ξ , τ)]. We assume that both components of the laser pulse have the
same dependencies. Therefore, in the case under consideration, the amplitude function for a fundamental soliton is of the
kind:

T = Tx = Ty = sech(τ) =
1

ch(τ)
. (9)

The energy of each of the components Ax and Ay of the amplitude function is given by the expressions [36]:

Transactions in Optics and Photonics 12 | Aneliya Dakova-Mollova, et al.



Ex =
∫ +∞

−∞

∣∣A2
x
∣∣dτ =

∣∣P2
x
∣∣∫ +∞

−∞
T 2dτ, (10)

Ey =
∫ +∞

−∞

∣∣A2
y
∣∣dτ =

∣∣P2
y
∣∣∫ +∞

−∞
T 2dτ. (11)

Considering formula (9), we obtain:

Ex = 2
∣∣P2

x
∣∣ , (12)

Ey = 2
∣∣P2

y
∣∣ . (13)

Therefore, the energies of the two components Ax and Ay are determined by the square of the modulus of the unknown
functions Px and Py, respectively. This gives us reason to eliminate the variable τ in equations (7) and (8). For this purpose,
we multiply the two equations by T and then we integrate them. Bearing in mind that, we find:
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After integration and short transformations, we obtain the following system of partial differential equations for the
unknown functions Px and Py:
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Our mathematical model requires us to assume that:
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After the assumptions made (21) and after a couple of transformations, the system of equations (19) and (20) can be
presented as follows:
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We search for a solution for that system in the form:
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where n = const.
By using the substitutions (24) in equations (22) and (23) we obtain:
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The resulting system contains two ordinary nonlinear differential equations, but this time of second order and third
degree for the unknown functions Rx and Ry of one variable r. We notice that the nonlinear terms in both equations are
the same, which means that the expressions can easily be linearized. For this purpose, we make assumptions so that when
writing the new equations, the nonlinear terms are dropped:

Rx(r) = f (r)cos(mrq) , Ry(r) = f (r)sin(mrq) , (27)
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where m and q are new constants about to be defined. By replacing the expressions (27) in the system of equations (25)
and (26) and after few transformations, we obtain the following algebraic equations:
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The expression above is an equation with separable variables. After separating the variables and integrating them,
we obtain the following solution:

f (r) = Nr−
q
2 , (33)

where N is an integration constant. We return to equation (30). By taking into account the expression (33) we obtain the
following equation:
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We equate the powers of the variable r and thus, we find the value of the parameter q:

q =
2
3
. (36)

Having in mind equation (36), from equation (35) we can find expressions for the parameters n and m. The first term
in equation (35) is a constant that we equate to zero, and the second term is a function of r only. For equality (35) to be
satisfied, we set the coefficient in front of r to be zero as well. Therefore:

m = N
√

3αγ(1−as), (37)

n =±1
3
. (38)

After finding values for q, m, and n we return through all the assumptions and substitutions made so far. Thus, we
defined the following exact analytical solutions for the components Ax and Ay of the vector amplitude function A⃗:
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 . (41)

The exact analytical solutions (39) and (40) of the system of equations (4) and (5) for the components Ax and Ay of
the vector amplitude function A⃗ describe the formation of optical vortex structures in single-mode fibers with step-index
profile under the influences of TOD and DN. The vortex parameter m is related to the number of rings observed in the
components of the optical vortices. It has to be a real number. For this condition to be fulfilled it is necessary that a < 1/s.

In the case of weak dispersion of nonlinearity
(

∂ χ(3)

∂ω
≈ 0
)
, we can assume that the self-steepening parameter s ≈ 2/α .

The obtained analytical expressions describe vortex structures with an amplitude type of singularity.

3. Numerical calculations
As a next step in our research, we will present numerical simulations, performed based on the obtained analytical

solutions (39) and (40) of the vector NAE (1). It investigated a single-mode optical fiber with a stepindex profile and a
nonlinearity parameter γ = 1. Two cases for ultra-short pulses with α = 4 are studied, when the vortex parameter is m = 2
and m = 4.
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The present paper aims to show the existing dependencies between the number and type of ring structures in the
intensity profiles of the components Ax and Ay of the vector amplitude function A⃗, the orientation of the vector electric
field and the vortex parameter m.

Figure 1 shows the intensity profiles of the components Ax and Ay of optical pulse for vortex parameter m = 2 and
number of oscillations under the pulse envelope α = 4. The typical ring structures for this type of amplitude vortices are
observed. Figure 2 gives the pulse’s spot (total intensity) and the vector diagram of the optical vortex.

Figure 1. Optical ring structures in the intensity profiles of the components (a) Ax and (b) Ay of laser vortex with parameters m = 2 and α = 4

Figure 2. Graph of (a) the total intensity profile and (b) vector diagram of optical vortex with parameters m = 2 and α = 4

Figure 3 presents the intensity profiles of the components Ax and Ay of the pulse for the value of the vortex parameter
and m = 4 and the number of oscillations under the pulse envelope α = 4. Concentric circles continue to be observed in
the components of the vector amplitude A⃗ of the vortex. The number of ring structures increases and their width decreases
(Figure 3). Figure 4 shows the total intensity of the laser pulse and the orientation of its vector electric field.
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Figure 3. Optical ring structures in the intensity profiles of the components (a) Ax and (b) Ay of laser vortex with parameters m = 4 and α = 4

Figure 4. Graph of (a) the total intensity profile and (b) vector diagram of optical vortex with parameters m = 4 and α = 4

In intensity profiles in Figure 2 and Figure 4, the absence of ring structures is clearly seen. As already mentioned
before this is a result of the compensation of minima in Ax with the maxima in Ay components and vice versa. The
presence of amplitude-type vortices is registered by the vector diagram, visualizing the depolarization of the electric field
of the pulses. The spot of the pulse does not change with the increase of the value of the vortex parameter m. The vector
diagrams show different patterns in the orientation of the vector electric field of vortices for m = 2, m = 4, and α = 4.

4. Conclusion
The study of optical vortices in fibers with a step-index profile and anomalous dispersion, taking into account the

influences of the third-order dispersion and the dispersion of nonlinearity, contributes to the improvement of the current
methods for transfer of information and offers new implementations in a number of other technological fields. We have
demonstrated that the evolution of such type of light pulses is described by a system of two nonlinear partial differential
equations for the Ax and Ay components of the vector amplitude function. This system was analytically studied and as a
result, we found new classes of exact solutions. They characterize the features in the dynamics of ultra-short laser vortices
in optical fibers with a step-index profile under these higher-order dispersive and nonlinear phenomena. The obtained
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structures have amplitude-type singularity and they strongly depend on the vortex parameter m, which determines the
number of ring structures in the optical vortices. Nonlinear parameters γ and s are involved in the expression for the
vortex parameter m. The second and third-order dispersion changes the phase of the optical pulse components. It turns
out that β does not directly affect the formation of the optical vortex.

Figures of the exact analytical solutions done for two different values of the vortex parameter m and parameter α = 4
are presented. Vortices are in the form of concentric circles. They are observed only in the intensity profiles of the Ax

and Ay components of the vector amplitude function A⃗. The width of the rings in the components varies depending on
the values of the vortex parameter and the number of oscillations under the pulse envelope. When the value of the vortex
parameterm grows, the number of rings in the intensity profile of the corresponding component of the laser pulse increases
as well and the width of the rings decreases. The vector diagram demonstrates the depolarization in the spot of the laser
pulse. It is observed that the orientation of the vector electric field in the total intensity profile of the vortex changes for
different values of the parameter m. These results are important for the development of modern photonic technologies.

The amplitude vortices are significantly influenced by the medium in which the optical pulse propagates. This plays
an important role in the formation of the optical structure, as we assume that for different complex profiles of the refractive
index of the medium, different vortex structures will form. This opens new perspectives for investigations in the field of
optical vortices and their dynamics in different waveguides.
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