A Novel Approach to Detect Abnormal Chest X-rays of COVID-19 Patients Using Image Processing and Deep Learning
DOI:
https://doi.org/10.37256/aie.222021977Keywords:
COVID-19, simple median filter, Gaussian filter, Canny's edge detection, region of interest, Hessian matrix, eigenvalues, Feed-Forward Neural NetworkAbstract
The study proposes a novel approach to automate classifying Chest X-ray (CXR) images of COVID-19 positive patients. All acquired images have been pre-processed with Simple Median Filter (SMF) and Gaussian Filter (GF) with kernel size (5, 5). The better filter is then identified by comparing Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) of denoised images. Canny's edge detection has been applied to find the Region of Interest (ROI) on denoised images. Eigenvalues [-2, 2] of the Hessian matrix (5 × 5) of the ROIs are then extracted, which constitutes the 'input' dataset to the Feed Forward Neural Network (FFNN) classifier, developed in this study. Eighty percent of the data is used for training the said network after 10-fold cross-validation and the performance of the network is tested with the remaining 20% of the data. Finally, validation has been made on another set of 'raw' normal and abnormal CXRs. Precision, Recall, Accuracy, and Computational time complexity (Big(O)) of the classifier are then estimated to examine its performance.