Review

H₂ as Clean Energy for Sustainable Future

Sovann Khan¹²* and Veasna Soum¹

¹Graduate School of Science, Royal University of Phnom Penh, Phnom Penh, 12150 Cambodia.
²Current affiliation: International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
E-mail: khan.sovann.455@m.kyushu-u.ac.jp

Received: 2 December 2022, Revised: 28 January 2023; Accepted: 6 March 2023

Abstract: H₂ is considered a clean fuel used in Fuel cell technology for electricity generation with zero greenhouse gas (GHG) emission. The demand for H₂ gas, typically for fuel cell electric vehicles (FCEVs), is increasing. However, the current H₂ production relies on natural gas and coals related to carbon oxide gas emission, which gives back to global warming concerns. Low-carbon production processes are needed to contribute to the United Nation’s sustainable development goals (SDGs). Water-splitting reaction using photocatalysis or electrocatalysis is a promising method for producing H₂ from water, which is the earth-abundant resource. These H₂ production methods based on catalytic technologies require highly active catalyst materials with long-term stability. The development of non-conventional materials with consideration of nanostructure, multijunction, and defect engineering is explored to achieve highly active catalyst materials. This mini-review discusses a basic understanding of H₂ production from water-splitting reactions via photocatalysis and electrocatalysis, with outstanding examples of recent works reported. Last part, we provide a short study on the H₂ global market and policy in order to conclude the future direction of H₂ energy.

Keywords: Hydrogen energy, photocatalysis, electrocatalysis, fuel cell,

Nomenclature

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>FCEV</td>
<td>Fuel cell electric vehicle</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable development Goal</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Proton exchange membrane fuel cell</td>
</tr>
<tr>
<td>AFC</td>
<td>Alkaline fuel cell</td>
</tr>
<tr>
<td>PAFC</td>
<td>Phosphoric acid fuel cell</td>
</tr>
<tr>
<td>MCFC</td>
<td>Molten carbonate fuel cell</td>
</tr>
<tr>
<td>SOFC</td>
<td>Solid oxide fuel cell</td>
</tr>
<tr>
<td>HER</td>
<td>Hydrogen evolution reaction</td>
</tr>
<tr>
<td>OER</td>
<td>Oxygen evolution reaction</td>
</tr>
<tr>
<td>SHE</td>
<td>Solar-to-hydrogen-efficiency</td>
</tr>
<tr>
<td>AQE</td>
<td>Appearance quantum efficiency</td>
</tr>
<tr>
<td>PEC</td>
<td>Photoelectrochemical cell</td>
</tr>
<tr>
<td>PLDV</td>
<td>Passenger light-duty vehicle</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
</tbody>
</table>
1. Introduction

Global warming, which causes the earth to become warmer yearly, is very concerning for life on earth. For a sustainable future enforced by the 2015 Paris Climate Accord, it was agreed that the remedy for environmental problems requires capping GHG emissions as soon as possible and holding global temperature rise below 2°C in this century [1]. Global warming is commonly known as the effects of GHGs, which are mainly composed of CO₂ (76%), CH₄ (16%), NOₓ (6%), and others (2%). A major GHG component is CO₂ gas, which originates from various sectors such as electricity and heat production (25%); agriculture, forestry, and other land use (24%); industry (21%); transportation (14%) and other (16%) [2]. Therefore, reducing CO₂ emissions is one of the targets for resolving global warming effects. The energy sector is one of the major CO₂-emitting sources, which come from the combustion of fossil fuels such as gasoline, coal, natural gas and so on [3,4]. Exploring alternative energy source, which is not harmful to the environment is very important.

In this context, hydrogen (H₂) gas is considered a clean energy source that emits zero CO₂. Hydrogen chemically reacts with oxygen through fuel cell technologies to produce electricity, water and small amount of heat [5]. Therefore, H₂ would be very potential candidate for the substitution of fossil fuels in the future, which contributes to SDGs of the United Nations [6]. Fuel cells produce electrical current that can be directly used as the power source for electric motors or illuminating a light bulb and a city. There are many kinds of fuel cell technologies, which are categorized based on their electrolytes and fuels such as:

1. Proton exchange membrane fuel cell (PEMFC) or polymer-electrolyte membrane (PEM) fuel cell: PEMFC is operated at low temperature (< 100°C) and high temperature (120-250°C) [7]. PEMFC composes of solid polymer electrolytes and porous carbon combined with platinum-based catalysts as electrodes. Pure hydrogen is required to operate this fuel cell. Because it operates at low temperature, PEMFC enables to have quick start-up. High power density, lightweight, compact structures and better durability are major advantages of PEMFC. However, PEMFC needs noble metal catalysts (e.g., platinum), which results in a high-cost system [8]. Platinum catalyst is also sensitive to carbon monoxide poisoning. Therefore, highly pure fuel gas is needed, or additional reactors are required if fuel gas is from hydrocarbon fuels, which produce additional cost for the system. Primary applications of PEMFC are transportation (e.g., cars, buses and heavy-duty tracks) and some stationary applications [9].

2. Alkaline fuel cell (AFC): AFC can operate at low temperature (<100°C) [10]. Alkaline solution (e.g., KOH) is used as electrolytes in this fuel cell. Highly active catalysts such as platinum or silver are used as electrode materials at this low-temperature operation. Besides, non-precious metals (e.g., nickel) are also reported as electrodes for this fuel cell. However, non-precious metal catalyst needs higher temperature (200-250°C [10]) to operate. At this high temperature, it requires a high-pressure system or highly concentrated electrolyte. The important advantages of AFC are low-temperature operation, high efficiency, and diverse choices of non-precious catalysts [11]. However, AFC is susceptible to CO₂ poisoning due to carbonate formation. Therefore, even small amount of CO₂ in the atmosphere can affect the cell performances and durability [12]. In addition, liquid electrolyte systems might give other problems such as wettability and corrosion. High power density of AFC is suitable in the W to kW-scale applications [13].

3. Phosphoric acid fuel cell (PAFC): PAFC uses liquid phosphoric acid as an electrolyte, and operates at temperature range between 150°C to 200°C [14]. The common electrodes are porous carbon containing platinum catalyst. Because acid electrolyte cells are tolerant to CO₂, cells can operate with normal air and non-pure hydrogen fuel [10,15]. However, corrosion is among major problems that restrict construction materials' choices. Compared to PEMFC and AFC, PAFC has lower electricity efficiency. This poorer efficiency might be due to the low activity of air electrode caused by increased stability of formed peroxides in an acid environment. This cell is generally large and heavy. PAFC has been used as power plants [15].

4. Molten carbonate fuel cell (MCFC): MCFC is the high-temperature fuel cell, which is operated at temperature higher than 600°C [10,16]. Electrolyte composes of molten mixture of potassium carbonate and lithium carbonate to transport carbonate ions from cathode to anode. High-temperature operating allows non-precious metal catalysts (e.g., nickel) to be used in MCFC, resulting in reduced system’s cost. Electricity conversion efficiency is higher than that of PAFC when it is coupled with turbine or waste heat. Unlike PEMFC, AFC and PAFC, MCFC enables to operate with pure H₂ fuel or H₂-contained fuels such as natural gas or biogas without external reformers [17]. However, major problem of this fuel cell is durability. Since MCFC operates at high temperature and corrosive electrolyte, cell components are easy to breakdown and reduced cell’s life [16]. Exploring corrosion-resistant materials for cell’s components is very important to improve the durability of cell. MCFC is used in gas and coal-based power plants for electrical utility, industrial and military applications [17].

5. Solid fuel cell (SOFC): SOFC uses dense ceramic compounds as electrolytes, and operate at high temperature (900-1000°C) [18]. Similar to MCFC, due to high-temperature operation, SOFC does not require noble metal catalysts, which produce low-cost systems. SOFC enables to reform internally the hydrocarbons, which allow to use not only hydrogen as fuel, but also other fuels such as CH₄ or other light hydrocarbons. Two types of
SOFC are classified based on their electrolytes. Ion-conducting SOFC is a conventional fuel cell, which its electrolyte is O_2^- anion-permeable [19]. Due to low anion-conductivity at low temperature, ion-conducting SOFC is generally operated at high temperature. Recently, the development of SOFC operated at intermediate temperatures (600-800 °C) is a new trend of research to develop next generation of SOFCs in order to reduce the operational cost of system [20]. Proton-conducting SOFC, which its electrolyte enables to transport H^+ ions from anode to cathode, is more promising in lower temperature operation (400-600 °C) [21]. SOFC highly tolerates to sulfur and carbon monoxides, which are among the major advantages over other cell types. However, high-temperature operation requires slow startup and low durability. SOFC might be not suitable for transportation applications.

To mitigate the CO$_2$ emission, the use of fuel cell in transportation sectors such cars, buses, trucks, trains, ships and etc. are in great interest. Among the above fuel cell types, PEMFCs are very promising in this application due to their portability and low-temperature operation [9]. A typical schematic of PEMFC is presented in Fig. 1(a). PEMFC mainly composes of anode, cathode and electrolyte. Different kinds of catalyst materials are deposited on substrate to form electrodes. H$_2$ is a common fuel used in this fuel cell. H$_2$ is catalytically ionized at anode and carries positive charge. Proton exchange membrane allows protons pass to cathode, while negative charged electrons provide current through wire, and utilized as electricity [22-24]. Fuel cells need H$_2$ as fuels and oxygen (possible extraction from air) to produce electricity, and release water molecules as waste. No CO$_2$ emission in these reactions, which enable them to be a perfect candidate for low-carbon energy production technology. Typically, the concept of using fuel cell as a power source for electric vehicle (EV) is demonstrated in Fig. 1(b). General Electric (GE) initially developed H$_2$-fuel cells used to power NASA’s Gemini and Apollo space capsule in 1960s [25]. Later, the interest in using fuel cell in EV market started increasing. Nowadays, many EV manufacturers produce fuel cell electric vehicles (FCEVs). Fig.1(c) shows one of FCEV examples of Toyota Mirai, which is amongst the best-sold FCEV in the world, parked in front of Kyushu University hydrogen station, Japan.

![Fig. 1: (a) General schematics of PEMFC and (b) demonstrating concept for using fuel cell as power source of electric car, (c) Toyota Mirai powered by H$_2$ fuel cell parked in front of Kyushu University hydrogen station, Japan [image taken on 12 December 2022].](image)

Although H$_2$-fuel cell technologies were ready to use for more than 60 years, they were not widely used as the common power sources due to the high price of H$_2$ and infrastructures [9]. H$_2$ is also the most plentiful element in the universe. H$_2$ can be produced from hydrogen-contained biomass, natural gas and water (H$_2$O). It has been challenging to extract H$_2$ gas from those natural compounds due to technological limits, typically for green H$_2$-production methods (e.g., water-splitting reaction) [26]. Until now, technologies used for H$_2$ production have been diversified. Typically, the advancement of nanotechnology enables various methods to produce H$_2$ more effectively and economically. Among production methods, water-splitting by photocatalysis and electrocatalysis is the most promising process in terms of environmental-friendly methods [27-30]. Water is an earth-abundant...
resource and a green source for H₂ production. Water molecule is split to produce H₂ and O₂ gases via water-splitting reactions, and these gases are utilized for electricity generation releasing water molecules back via fuel cell. This process produces a clean energy cycle, which requires water, catalysts and fuel cells (see Fig. 2). Electricity is obtained and no GHG emission is involved. In this review, we highlight the basic understanding related to H₂ energy, including their production methods, H₂-to-electricity technologies (fuel cell) and the foreseen market trend. Typically, we select case studies from most recent reports as examples for intensive discussion of each process.

Fig. 2: A diagram of H₂ energy cycle from water.

2. H₂ production methods

2.1. Steam reforming methods

Hydrogen does not exist naturally as a pure gas. It is generally combined with other elements in the form of biomass, hydrocarbon, and water, which are used as the sources for H₂ productions [31]. Currently, major H₂ production is based on hydrocarbon fuels via steam reforming processes. For example, methane (CH₄) reforming via the following reactions [32-35]:

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow \text{CO} + 3\text{H}_2 \quad (1) \\
\text{CO} + \text{H}_2\text{O} & \rightarrow \text{CO}_2 + \text{H}_2 \quad (2) \\
2\text{CH}_4 + \text{O}_2 + \text{CO}_2 & \rightarrow 3\text{H}_2 + 3\text{CO} + \text{H}_2\text{O} \quad (3) \\
4\text{CH}_4 + \text{O}_2 + 2\text{H}_2\text{O} & \rightarrow 10\text{H}_2 + 4\text{CO} \quad (4)
\end{align*}
\]

Steam reforming reactions are proceeded by catalyst and heat. In the current H₂ market, steam reforming methods are majorly used for the commercial production of H₂. However, these processes require higher energy consumption (high temperature) and release carbon oxide gases, which are among the green gases [36]. Therefore, low-carbon production processes are needed to replace these conventional methods.

2.2. Photocatalysis

After discovering the water-splitting reaction enabled by TiO₂ photocatalyst and light energy, photocatalytic H₂-generation became a clean and promising method, which requires only semiconductors and light energy (obtained from solar energy) [37]. When light energy, which equals or is higher than the bandgap energy of semiconductors, is radiated, electrons (e⁻) are excited to the conduction band (CB), leaving holes (h⁺) at the valence band (VB) (see Fig. 3(a)) [38,39]. Electrons and holes are active species in photocatalytic reactions. In photocatalytic water-splitting reaction, water molecules encounter oxidation reactions by holes to form oxygen gas and release protons (H⁺) via equation (5). At CB, electrons process reduction reaction to form H₂ gas via equation (6). The overall reaction of this system produces oxygen and hydrogen gases from water molecules (equation (7)) [38,39].

\[
\begin{align*}
\text{H}_2\text{O} + 2h^+ & \rightarrow \text{O}_2 + 2\text{H}^+ \quad (5) \\
2\text{H}^+ + 2e^- & \rightarrow \text{H}_2 \quad (6) \\
\text{Total reaction:} \quad \text{H}_2\text{O} & \rightarrow 1/2\text{O}_2 + \text{H}_2 \quad (7)
\end{align*}
\]
Water-splitting reaction by photocatalysis is a promising method for clean H₂ production. This method generates zero CO₂ emission from earth-abundant raw materials (e.g., water). Light energy can be obtained from sunlight. The most challenging work in this process is developing active photocatalysts. So far, active photocatalysts were developed such as TiO₂, SrTiO₃, KTaO₃, WO₃, ZnS, MoS₂, CdS, C₃N₄ and etc. [40,41]. However, most highly active materials (e.g., TiO₂) have large bandgap that is activated by ultraviolet (UV) light, only. Because the solar spectrum contains only small fraction of UV light (<5%) [41,42], solar-to-hydrogen efficiency (SHE) is very low to be utilized on industrial scales. Another barrier that limits the efficiency of the photocatalytic activities of those semiconductor materials is the rapid recombination rate between light-generated electrons and holes, which are active species in photocatalytic reactions. For example, the theoretical maximum SHE of anatase and rutile TiO₂ is only 1.3% and 2.2%, respectively [43]. Therefore, clear challenges must be addressed in order to realize the true potential of semiconductor photocatalysts in H₂-production industries. To overcome these issues, scientists have developed a number of resolutions for improving the efficiency of existing photocatalysts:

Defect engineering: native defects and impurity doping are utilized to improve photocatalysis under UV and visible light [29,44,45]. Native defects such as interstitials or vacancies are effectively utilized for improving
photocatalytic activities. To induce such kinds of defects, thermal treatment is the most common methods used [29,44]. We have induced different kinds of defects in brookite TiO$_2$ nanoparticles by annealing in different atmospheres [29]. We found that at light-reductive annealing, only oxygen vacancies (V$_{O}^{\cdot\cdot}$) were formed, while at an intermediate reductive atmosphere, Ti interstitial (Ti$_{i}^{\cdot\cdot}$) defects were preferentially formed. However, antisite defects (Ti substituted O-site, Ti$_{O}^{\cdot\cdot}$) were dominant in a strong reductive atmosphere. And only Ti$_{i}^{\cdot\cdot}$ defects were found to have beneficial effects for photocatalysis due to the formation of shallow-energy levels, which facilitated the charge transfer. In addition, the reduced state of titanium ions in TiO$_2$ such as Ti$^{3+}$ species was well-known for enhanced visible-light photocatalysis [46-49]. In addition, native defects can induce by other methods such as chemical reduction [46,50,51], and plasma treatment [52-54].

Besides native defects, impurity doping is also conventionally used to enhance visible-light absorption of semiconductor photocatalysts by creating energy levels below the CB or upper the VB, which results in reduced bandgap energy (see Fig. 3(b)). Metal ions (e.g., Cr, Nb, W, Ce, Mn, Cu, Co, Ni and Fe [55-60]) are reported as dopants in various semiconductor photocatalysts. For example, W-doping has been successfully used to improve the photocatalytic activity of TiO$_2$ under visible light radiation [61]. Bandgap reduction originates from d-orbital state of W$^{6+}$ creating mid-gap energy level below the CB of TiO$_2$. Typically, W$^{6+}$-doping in rutile phase reduces bandgap of TiO$_2$ more significantly than that in anatase one [61]. Cr ion is another dopant candidate, which effectively used to enhance visible light utilization of TiO$_2$ photocatalyst due to its strong interaction between the Cr–O–Ti bond [62,63]. Doping Cr ions induce substantial amount of Ti$^{3+}$, which might account for the improving visible light photocatalysis [64]. The Cr$^{6+}$ species is considered as the most active species in the Cr-doped TiO$_2$, because the synchronization of Cr$^{6+}$ and TiO$_2$ is processed by the Cr$^{6+} = O^{2-} \rightarrow Cr^{4+}O^{2-}$ route, which is responsible for the visible light photocatalytic reaction [65-69]. Besides metal doping, non-metal elements (e.g., N, C, S, P, B, F and I [70-75]) are also used to modify VB of semiconductor photocatalysts for reducing bandgap energy. In difference from metal doping, non-metal dopants do not produce drawback on photocatalysis. N-doping is the well-known anion dopant for enhancing photocatalytic activity of semiconductors (e.g., TiO$_2$ [76,77], ZnO [78,79], ZnS [80,81]) in both visible and UV light. N-doped TiO$_2$ has been extensively investigated for effective visible-light photocatalysis. It is reported that visible light photocatalytic activity of N-doped TiO$_2$ influences by N-doping concentrations and doping sites. The dominant factor for the enhanced photocatalytic activities under visible light should be due to the reduced band gap energy of TiO$_2$ by incorporating N atoms into the TiO$_2$ lattice, resulting in the alteration of the electronic band structure. The N doping creates a mid-gap energy state of N 2p formed above the O 2p VB and narrows the band gap of TiO$_2$ from 3.07 to 2.47 eV [82].

2) heterojunction: constructing heterostructure with two or more materials/phases, which have perfect band alignment for charge-transfers, is used to separate photo-excited electron-hole pairs resulting in elongation of the lifetime of active species for chemical reactions [27,83,84]. Major heterojunctions of semiconductor photocatalysts are mainly categorized into four types: Type-I, Type-II, Type-III and Z-scheme heterojunction (see Fig. 3(c)-(f)). For Type-I heterojunction (straddling gap), the VB of A-semiconductor is lower than that of B-semiconductor, while the CB of A-semiconductor is higher than B-semiconductor’s. In this case, both electrons and holes transfer from A-semiconductor to B-semiconductor. In Type-I system, the separation of electron and hole is less pronounced. Type-I heterojunctions such as TiO$_2$–WO$_3$ [85,86], TiO$_2$–ZrO$_2$ [85,87,88], TiO$_2$–Fe$_2$O$_3$ [85,89,90], TiO$_2$–MoS$_2$ [85,91,92], TiO$_2$–BiVO$_4$ [85,93] and etc. are reported so far. Type-II heterojunction (staggered gap) composes of A-semiconductor, which its CB is higher than that of B-semiconductor, while VB of B-semiconductor is lower than A’s. So, electrons flow from A-semiconductor to B-conductor, while holes move from B-semiconductor to A-semiconductor. In Type-II, the electron-hole pairs are effectively separated, which result in higher photocatalytic reactions. Many Type-II heterojunctioned materials have been reported such as TiO$_2$ anatase-rutile [61,94,95], TiO$_2$–ZnO [96,97], TiO$_2$–SnO$_2$ [98,99], BiWO$_6$–Ag$_2$O [100], TiO$_2$–CuO/Cu$_2$O [100-104], BiVO$_4$–WO$_3$ [105-108], SrTiO$_3$–TiO$_2$ [109,110] and etc. When the bandgap is not overlapped between A and B-semiconductor, it is called Type-III heterojunction (broken gap). Few materials such as WO$_2$–GdCrO$_3$ [111-113], InSb–InAs [114], Sc$_2$CF$_2$–Sc$_2$CO$_2$ [115] and others are reported as Type-III heterojunction. Charge transfer does not occur in this system, which is not significant for the electron-hole pair separation method. Defect/bandgap engineering can be used to enhance the charge transfer within this system [111-113,116]. Z-scheme heterojunction is formed with A-semiconductor, which its CB and VB are higher than those of B-semiconductor. Electrons at the CB of B-semiconductor recombine with holes at the VB of A-semiconductor. In this manner, holes accumulate at the VB of B-semiconductor, while electrons accumulate at the CB of A-semiconductor. Number of highly active Z-scheme heterostructures have been developed such as, ZnS–ZnO [39,117-119], TiO$_2$–C$_3$N$_4$ [120,121], TiO$_2$–CdS [122,123], ZnO–CdS [124,125], ZnO–C$_3$N$_4$ [126,127], CdIn$_2$Se$_3$–TiO$_2$ [128] and many others [120,129].

3) loading cocatalysts: cocatalysts are very promising for improving H$_2$ generation reactions. Loading cocatalysts such as noble metals (Pt, Rh, Ru, Pd [38,130-133]) and non-noble metals (Ni, Co, Cu [134-137]) is successfully utilized for enhanced H$_2$-production by photocatalysis [30]. It is well understood that loading metal
nanoparticles improve the H₂-production reaction over semiconductor photocatalysts based on two main factors: (1) reduction of the activation energy (overpotential) for the H₂-evolution reaction on the surface of a semiconductor and (2) improvement of the electron-hole separation [138]. To achieve high production of H₂ via water-splitting reaction, cocatalysts are considered as state-of-the-art for the synthesis of high-performance catalysts and catalyst compounds [38,131]. Multiple cocatalysts are successfully utilized for a high production rate of hydrogen. For example, Takata et al. synthesized Al-doped SrTiO₃ loading with Rh/Cr₂O₃ and CoOOH, and produced H₂ up to 96% of external quantum efficiency at 350-360 nm wavelengths. This is among the best photocatalyst compounds reported so far [139]. To harvest solar energy, the development of visible-light utilized photocatalysts is very hot topic and it is very challenging. Therefore, more complex structures of catalyst/catalyst compounds have been developed. We introduced a new multijunctional photocatalyst composed of C-doped ZnS-ZnO loading with Rh cocatalyst [45]. We consider nanostructure, doping and heterojunction into a single catalyst compound (see Fig. 4). First, ZnS/ethylenediamine nanosheet-complex is synthesized by solvothermal method. By controlling the annealing atmospheres (e.g., air, N₂ or O₂), ZnS, ZnO and ZnO-ZnS nanosheet composite can be obtained. Annealing in air at 500 °C for 1 h shows the best composite with the highest H₂ production from water-splitting reaction. More importantly, carbon decomposed from ethylenediamine is doped into both ZnS and ZnO. Density functional theory (DFT) calculation reveals that C-substitution for S as neutral charge (C₅⁰) is dominant in ZnS. However, in ZnO, C-substitute for Zn is preferentially formed as a positive (C₆⁺) and neutral (C₅⁰). C-doping is proven to reduce the bandgap of both ZnS and ZnO (see band diagram of Fig. 4(b)). After loading with Rh cocatalyst by photoreduction, the formed heterojunction of ZnS-ZnO/Rh ensures the effective electron-hole pair separation resulting in enhanced H₂-generation reaction. Nanosheet structure provides a large surface area for reaction and effective charge separation in photocatalysis. As a result, multijunctioned C-doped ZnS-ZnO/Rh photocatalyst enables to produce H₂ generation from broad-light spectrum of solar simulator (Fig. 4(c)~4(d)) [45].

![Figure 4](image-url)
Wang et al. developed photocatalyst sheets based on Z-scheme systems by combining a hydrogen evolution photocatalyst (SrTiO$_3$:La,Rh) and an oxygen evolution photocatalyst (BiVO$_4$:Mo), which enabled to harvest the sunlight for overall water-splitting reaction from pure water to produce oxygen and hydrogen gas, simultaneously [38]. These two photocatalyst sheets are embedded onto both sides of gold layers to form SrTiO$_3$:La,Rh/Au/BiVO$_4$:Mo as Z-scheme structure. When light is radiated, electrons are excited to CB and positive holes are at VB of both semiconductors. Holes at VB of BiVO$_4$:Mo oxidize water to form oxygen gas, and electrons transfer to Au nanoparticles. At the same time, electrons at CB of SrTiO$_3$:La,Rh reduce water to form hydrogen gas, while holes at VB of SrTiO$_3$:La,Rh transfer to Au nanoparticles. Therefore, overall water-splitting reaction is achieved by this system. To enhance activity of catalysts, Ru nanoparticles are deposited on the photocatalyst sheets by photodeposition. In addition, coating Ru particle’s surface by Cr$_2$O$_3$ and amorphous TiO$_2$ layers is used to suppress the backward reactions, which allow the developed system maintain high activity under elevated pressures. In the preparation, annealing is an important process to remove impurity and reduce contact resistance, which facilitates the charge transfer within the system. This Z-scheme photocatalyst sheet showed excellent photocatalytic activity for pure water splitting with a solar-to-hydrogen energy conversion efficiency of 1.1% and appearance quantum efficiency (AQE) of > 30% at 419 nm [38].

2.3. Electrocatalysis

Water-splitting electrocatalysis for H$_2$ and O$_2$ production has been utilized for more 200 years. The electrolysis of water can be processed with minimum potential difference of 1.23 V in theory, which is equivalent to input energy of $\Delta G = 237.1$ kJ mol$^{-1}$. However, overpotential is needed in practice to overcome the activation barrier of the reaction [140,141]. The general configuration of water electrocatalysis is represented in Fig. 5(a).

Although water electrolysis was discovered since long time ago, this process was not yet applied for an industrial scale due to the need of electricity (energy) for processing. Recently, water electrolysis shows its promise in low-carbon processes for H$_2$ production [142]. Due to the advancement of material science and technologies, high-efficient electrodes have been developed, and they are on the ways of commercialization.

Overall-water splitting from pure water is hard to be proceeded due to limited self-ionization of water. Therefore, half-reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are generally operated in alkaline and acidic electrolyte:

In acidic electrolytes:

- **At anode (oxidation):**
 \[2\text{H}_2\text{O}(l) \rightarrow \text{O}_2(g) + 4\text{H}^+(aq) + 4\text{e}^- \] \[(8) \]

- **At cathode (reduction):**
 \[4\text{H}^+(aq) + 4\text{e}^- \rightarrow 2\text{H}_2(g) \] \[(9) \]

In alkaline (basic):

- **At cathode (reduction):**
 \[4\text{OH}^-(aq) + 4\text{e}^- \rightarrow 2\text{H}_2(g) + 4\text{OH}^-(aq) \] \[(10) \]

- **At anode (oxidation):**
 \[4\text{OH}^-(aq) \rightarrow \text{O}_2(g) + 2\text{H}_2\text{O}(l) + 4\text{e}^- \] \[(11) \]

Generally, in acidic reaction, noble metals are used as electrode materials such as Pt for HER and IrO$_2$ or RuO$_2$ for OER. Although noble metal-based catalysts produce high production yield in acidic medium, corrosion is the most important problem for long-term operation [143,144]. Challenges to synthesize catalysts, which enable to process in alkaline and neutral medium are among popular trends in current research. Typically, in HER, more sluggish in kinetics due to the slow water-dissociation reaction is widely known as factor limiting activity of hydrogen evolution from water electrolysis in alkaline and neutral medium. In the neutral/alkaline medium, low hydrogen adsorbed on active site of the catalyst’s surface is the main reason of low hydrogen generation [145]. To overcome these issues, researchers have invented many strategies such as introducing transition metal hydroxide onto active catalysts [142,146], or surface/interface engineering to create more active site of catalysts [147,148]. Recently, Chen et al. introduced new method to synthesize highly active catalyst compound based on hydrogen spillover mechanism by integrating Ru nanoparticles onto the oxygen-deficient WO$_3$ support [149]. Oxygen-deficient WO$_{3-x}$ enables to store protons (a proton reservoir), and transfer to Ru nanoparticles during HER, enhancing HER reaction kinetics of Ru in neutral medium. HER of Ru/WO$_{3-x}$ under neutral medium (1 M phosphate buffer solution) was achieved at low overpotential (∼19 mV) to reach current density of 10 mA cm$^{-2}$ with Tafel slope of 41 mV dec$^{-1}$. This HER activity was 24 times higher than that processed by commercial Ru/C electrode. This catalyst showed high stability up to 30 hours in neutral medium. A plausible mechanism of this enhanced HER activity is explained by hydrogen spillover mechanism. Under supplied cathodic potential, protons from electrolyte adsorb at oxygen-deficient WO$_{3-x}$ to form H$_2$WO$_{3-x}$, and later transfer to Ru nanoparticles. Oxygen vacancies act as proton storage. When cathodic overpotential is increased, WO$_{3-x}$...
dissociated water molecules to produce protons, which additionally spillover to Ru nanoparticles. Therefore, the rate-determining steps of HER in neutral medium from water dissociation to hydrogen recombination is changed, and enhanced HER kinetics [149].

Fig. 5: (a) General reactor for water electrolysis, (b) decoupled water electrolysis, (c) hybrid water electrolysis, (d) tandem water electrolysis [figures (b), (c) and (d) are adapted from ref. [141] with permission from American Chemical Society, Copyright 2018].

In alkaline reaction, transition metal cocatalysts are always used [141]. Consideration of both performance and cost of the catalyst is very important for large-scale H\textsubscript{2} production via water electrolysis. Many efforts have been attempted to improve water electrolysis performance by developing active catalyst/catalyst compounds composed of functional and multicomponent structures. Besides, process operation and cell fabricating designs are also developed to be more advantageous than the conventional ones. To achieve overall water-splitting reaction, bifunctional electrocatalysts have been developed for both OER and HER in the same reaction electrolyte and cell. You and Sun successfully utilized CoP\textsubscript{x} [150], Ni\textsubscript{2}P [151], CoP\textsubscript{x} embedded N-doped C-matrix (Co-P/NC) [152] and NiS\textsubscript{x} [153] film obtaining by electrodeposition for active bifunctional catalyst for both OER and HER. However, this overall water-splitting proceeded by these materials were still unsatisfied. For targeting H\textsubscript{2} production, decoupled water electrolysis was developed by introducing redox mediators (see Fig. 5(b)). By shifting the operation of HER and OER, mixing H\textsubscript{2}/O\textsubscript{2} and forming reactive oxygen species can be avoided. When a negative bias is applied, HER proceeds at the cathode and oxidizes the redox mediator at the counter electrode. When a positive bias is applied, OER processes at anode and reduces redox mediator to the original states together with oxygen evolution. Numbers of redox mediators were reported including acidic redox mediators (e.g., silicotungstic acid [154], phosphomolybdic acid [155], quinone derivatives [156]) and alkaline redox mediators (e.g., (ferrocenylmethyl)trimethylammonium chlorite (FcNCl) [157], Na[Fe(CN)\textsubscript{6}] [157], Ni(OH)\textsubscript{2} [158,159]). In some cases, oxygen is not the target product. Therefore, organic materials, which are easier to oxidize than water, are added into the reactor, which is called hybrid water electrolysis (Fig. 5(c)). There are number advantages of hybrid water electrolysis with biomass as oxidized substrate. Some organic biomasses can be oxidized at a lower bias applied, which results in higher current density at lower voltage input. Selected biomasses can be oxidized to form valued products [160]. Problem of O\textsubscript{2}/H\textsubscript{2} mixture and reactive oxygen species formation can be avoided because no oxygen is produced. A high yield of H\textsubscript{2} production is achieved with separation-free process. Hybrid water electrolysis also shows its potential in pollutant decomposition for water treatment applications [161-164]. Rather than producing H\textsubscript{2} and store it for next use, this process is directly utilized hydrogen to produce valued products such as CH\textsubscript{4} and NH\textsubscript{3} by combining with biocatalysis called tandem water electrolysis (Fig. 5(d)). It is very innovative to create fuel from CO\textsubscript{2} coupled with water electrolysis and Mathanosarcina barkeri (M. barkeri) [165].
A typical example of nanostructured materials of NiCoFe layer triple hydroxide (LTHs) supported carbon fiber cloth (CFC) was developed for overall water-splitting electrolysis [166]. NiCoFe/CFC electrode was prepared by electrodeposition method. Well-defined nanostructure of ultrathin nanosheets (3–5 nm) wrapped uniformly on the CFC (Fig. 6(a)). Interlink of nanosheets creates network structures that provide space for transportation and diffusion of resultants and reactants, and enhanced fast transportation of electrons resulting in reduced resistance of NiCoFe/CFC electrocatalyst. OER operated in 1 M KOH showed a small onset potential ~1.45 V with an overpotential about 0.22 V and a small Tafel slope (~32 mVdec⁻¹). From the same reaction condition, NiCoFe/CFC afforded HER with a small onset potential ~0.180 V (overpotential ~0.20 V) and Tafel slope was ~70 mVdec⁻¹. With these excellent OER and HER electrocatalysis, NiCoFe/CFC enabled to perform overall water-splitting reaction in alkaline solution with onset potential of 1.51 V (Fig. 6(b)). With this small potential for overall water-splitting reaction, NiCoFe/CFC showed the best catalyst among reported catalysts in terms of both performance and durability (Fig. 6(c)).

Besides metal-based catalysts/catalyst compounds, oxide perovskite materials (ABO₃, A: rare-earth alkaline metal ions, B: transition metal ions) have been considered as newly interested materials due to their high electrocatalytic activities and low cost [167-169]. Outstanding perovskite candidates have been developed for water electrolysis such as SrCoO₃ [170], SrTiO₃ [171], LaNiO₃ [172], LaFeO₃ [173] and etc. These perovskite oxides possess diverse physicochemical properties with doping foreign elements. It has been reported that both A- and B-site doping affect the catalytic activities due to the change of electronic structures and defect formation. A-site doping has been proved to have beneficial effects on OER/ÖRR activity by stabilizing the oxygen vacancies, subsequently influenced the electronic and chemical state of B-site ions [170,174-176]. Besides A-site doping, recent reports show that doping/co-doping at B-site exhibited excellent catalytic activity which attributes to a favourable balance of oxygen vacancy content, ion mobility and surface electron transfer [177]. To make more promising properties in term of both activity and stability, multi-components/structures were developed as composite structure between oxide perovskite and other materials (e.g., carbon). Bu et al., for example, synthesized heterostructures of (PrBa₀.₅Sr₀.₅)₀.₉⁵Co₁.₅Fe₀.₅O₅₋δ (PBSF) and 3 dimensional structure (3D) of N-

Fig. 6: NiCoFe layer triple hydroxide (LTHs) (a) SEM image of NiCoFe LTHs on carbon fiber cloth, (b) polarization curves of the overall water splitting using NiCoFe LTHs/CFC and Pt/C as functional electrocatalysts (same loading) in a two-electrode system, (c) comparisons of splitting potential of NiCoFe LTHs/CFC as bifunctional electrocatalysts with those of other bifunctional electrocatalysts at 20 mA cm⁻² [adapted from ref. [166] with permission from American Chemical Society, Copyright 2016].
doped graphene used as an electrocatalyst for OER and HER in alkaline medium [178]. N-doped graphene donates electrons to PdSCF, which enhances the OER by increasing the covalency between Co and lattice oxygen, and later, enhances HER by stabilizing H2 [178].

So far, the advancement of water electrolysis to produce green hydrogen from water becomes more practical for industrial scale production because various choices of highly active catalysts and reactors were well developed for all reaction media including acidic, alkaline, or neutral solution. Next challenge is to develop electrolyser, which can be operated effectively from saline water, directly. Due to the complex component of sea water, instability of electrolyser caused by electrode site effect reaction and corrosion is a big barrier for mass production of this green hydrogen. However, researchers are struggling to find the resolutions to solve this problem. Coating with chloride corrosion-tolerant materials such as polyanion coating can help with modest success [179,180]. Another way is to install pre-desalination process that can be used to avoid side-reaction and corrosion problem. However, this additional process provides additional cost to the system, which is not preferred for lost-cost production [181,182]. Recently, Xie et al. developed a membrane-based water electrolyser for hydrogen production from sea water with the integration of in situ water purification process, which enabled to operate at current density of 250 mA cm⁻² for over 3200 hours [183]. In this system, in situ water purification process based on a self-driven phase transition mechanism could completely block the impurity ions (e.g., SO₄²⁻, Cl⁻, Mg²⁺ and etc.) to penetrate into electrolyser, which can address the side-reaction and corrosion problems [183]. This new discovery makes water electrolysis technology more promises for practical applications of hydrogen production from sea water.

2.4. Photoelectrochemical process

Photoelectrochemical cell (PEC) is a kind of photocatalytic devices, which utilize light to split water molecules to generate oxygens and hydrogens by photoelectrochemical reactions. The activity of semiconductor materials and the fabrication process of electrodes are key successes in high-performant PECs. Catalysts are deposited on a substrate to form electrodes (cathode and anode). Because the quality of films determines the performance of devices, development of deposition methods is very important. The common deposition methods used in PEC fabrication are solution process (e.g., spin-coating, deep-coating, doctor blade), chemical vapour deposition (CVD), laser/plasma-assisted deposition, electrodeposition and so on [43]. General setup of tandem PEC is represented in Fig. 7(a). Both cathode and anode are submerged into pure water or electrolytes. Light is radiated at both electrodes. As a n-type semiconductor, photogenerated holes accumulate on the surface of photoanode, and oxidize water molecules to form O₂. Photocathode, a p-type semiconductor, which conduction band edge is more negative than hydrogen evolution reaction potential, performs reduction reaction to form hydrogen gas [184]. From overall water-splitting reaction, oxygen gas is collected at anode side, while hydrogen gas is collected at cathode side. Photocathode materials (p-type semiconductor) such as GaP [185], InP [186], GaInP₂ [187], Si [188], WS₂ [189], Cu(In,Ga)Se₂ [190], Cu₂O [191], CaFe₂O₄ [192], Fe₂O₃ [193] and etc. are successfully developed for PEC’s electrodes. In addition, photoanode materials (n-type semiconductor) are reported so far such as TiO₂ [194], WO₃ [195], α-Fe₂O₃ [196], BiVO₄ [197], ZnFe₂O₄ [198], β-Fe₂O₃ [199], Ta₃N₅ [200], TaON [201], and SrTaO₅N [202]. Although PECs are very promising for clean H₂ production, research and development are ongoing to improve efficiency, durability, and cost reduction.

The following discussion is a typical example of efficient photocatalyst used for fabricating photocathode of PECs. To achieve high efficiency for solar-harvesting, photocathode materials need to have enough bandgap energy (>1.6 eV) to split the water, and not too big (<2.2 eV) to absorb the visible light from solar spectrum [184,203]. Corresponding to these criteria, Ta₃N₅ has suitable band position for water-splitting reaction and small bandgap (2.1 eV) for visible light absorption [204,205]. Li et al. fabricated vertically aligned Ta₃N₅ nanorod arrays using through-mask anodization method and utilized as a photocathode of high-performant PEC for water-splitting [203]. Fabricating process of Ta₃N₅ nanorod arrays is represented in Fig. 7(b). First, anodization of Al on Ta substrate forms the porous anodic alumina (PAA) mask, and then Ta₂O₅ nanorod arrays are formed by embedding into the nanochannels of PAA by Ta substrate anodizing. After selectively etching, Ta₂O₅ nanorod arrays standing on Ta substrate are obtained. Finally, Ta₂O₅ nanorods are converted to Ta₃N₅ nanorods by nitridation. Ta₃N₅ nanorod arrays have narrow size distribution (±10 nm) with a diameter of ~60 nm and length of ~600 nm (Fig. 7(c)). These Ta₃N₅ nanorod arrays are stable at high-temperature nitridation (1000 °C). After loading with IrO₂ cocatalyst, under AM1.5G simulated sunlight in a 0.5 M Na₂SO₄ solution (pH 13), the current density of sample annealed at 850 °C was 1.0 mA. cm⁻² at 1.23 V_RHE, which was less than that annealed at 1000 °C (~3.8 mA. cm⁻² at 1.23 V_RHE) (see Fig. 7(d)). At low-temperature nitridation (850 °C), polycrystalline Ta₃N₅ is formed as interlayer between Ta substrate and Ta₂O₅ nanorod arrays, which limit the electron transfer between catalyst and substrate due to poor electrical conductivity of polycrystalline Ta₃N₅. However, at high-temperature nitridation (1000 °C), polycrystalline Ta₃N₅ converts to metallic Ta₃N₅ and Ta₂N, which have better electrical conductivity. As a result, by nitridation at 1000 °C, Ta₃N₅ nanorod arrays produce high current density with a maximum incident photon-to-current conversion efficiency (IPCE) of 41.3% at 440 nm under 1.23 V_RHE [203].
3. Global H₂ market and policy

Based on the sustainable development scenario, H₂ demand for the global market is expected to increase from 70.7 million tonnes per year in 2019 to 287 million tonnes per year in 2050 (see Fig. 8(a)) [206]. In 2050, some emerging sectors such as transportation, power, ammonia production and synfuel production are expected to take share of this hydrogen demand [206]. The current hydrogen demand is mostly used for oil refining and chemical production, and they are currently produced from natural gas and coal, and associated with CO₂ emissions [36]. However, hydrogen must be produced from low-carbon processes (LCP) for reliable and clean energy sources. Two major LCPs are utilized for commercial H₂ production: Combined conventional technologies with carbon capture and utilization or storage (CCUS) and water electrolysis. H₂ production by LCPs has been increasing drastically since 2020, and it is expected that H₂ production produced by LCPs will increase up to 7.92 million tonnes per year in 2030 (see Fig. 8(b)) [36]. Japan started operating the world’s largest-class hydrogen production from water electrolysis using electricity from solar power in Fukushima in March 2020. This 10 MW project enables to produce 1200 Nm³ of hydrogen per hour (rated power operation) [207]. Japan has targeted to make H₂ affordable in $3/Kg by 2030 and $2/Kg by 2050 through the Prime minister’s initiative in “Basic Hydrogen Strategy” [208]. Danish government planned in May 2020 to build two energy islands, which can generate 4 GW of electricity and green hydrogen for various sectors such as shipping, aviation, industry and heavy transportation [209]. In June 2020, German Thyssenkrupp and Steag planned on a 500 MW hydrogen electrolysis plant to power steel production [210]. In December 2020, CWP Renewables, an Australian’s green hydrogen project developers and partners launched the Green Hydrogen Catapult initiative in which 25 GW of renewable-based hydrogen would be produced by 2026, and the cost of hydrogen is expected to reduce to SUS2/Kg [211]. Recently, Bill Gates’ Breakthrough Energy Ventures announced their leading funds of SUS22 million to Israeli-based H₂Pro for development of green hydrogen production, which their price is expected to SUS1/Kg. H₂Pro employs conventional electrochemical (E) and thermally-activated chemical (TAC), E-TAC, which water splitting efficiency can reach 95% [212]. Therefore, green production of H₂ would become a great interest for clean-energy businesses in the near future.
One of the most important applications of H$_2$ is FCEV such as passenger light-duty vehicles (PLDVs), buses, trucks, ships, and aircrafts [214,215]. Among these FCEVs, PLDV is the most dominant stocks. Global FCEV stock was reported to 43140 units at the end of 2021 (IEA, 2022 [213]). Until 2019, USA was the world leader in FCEV stock followed by China, South Korea and Japan. It surprises the world that Asian countries such as Japan, Korea and China are expanding their FCEV stocks, drastically. The numbers of FCEVs in the USA in 2019 was 8040 units, while in China, Korea and Japan were 6180, 5080 and 3630 units, respectively (see Fig. 8(c)). South Korea’s target stock is 200 000 and 2.9 million units in 2025 and 2040. Japan would increase to 200 000 and 800 000 units in 2025 and 2030. China’s target is 50 000 and 1 million units in 2025 and 2030 [216]. Three popular FCEV models in global markets are Toyota’s Mirai, Hyundai’s Nexo and Honda Motor’s Clarity Fuel Cell [217]. Nexo was the most-sold model FCEVs in 2019, mainly sold in South Korea’s domestic market [218].

4. Summary and outlooks

H$_2$ is very promising energy source for the sustainable future of the earth. Through fuel cell technologies, H$_2$ can be utilized to produce electricity with zero CO$_2$ emission. H$_2$ FCEVs are emerging in global EV market, typically in Asian nations such as South Korea, Japan and China. Global demand for H$_2$ is increasing drastically. However, the current H$_2$ production has relied on conventional methods from natural gas and coal associated with CO$_2$ emissions. H$_2$ production from water-splitting reaction via photocatalysis and electrocatalysis is a green method and very promising for low-carbon society. In order to make this green technology as a true potential for our future energy, research and development need to be conducted to improve the current efficiency of catalysts and devices:

1. **Photocatalysis/photoelectrochemical cell**: Highly active photocatalysts have been developed with efficiency upto > 96% under UV-light based on bandgap engineering and heterojunction. However, to harvest the solar energy, which is the unlimited energy on the earth, visible-light photocatalysts are needed. Currently, most high-performance photocatalyst and photocatalyst compounds are based on noble cocatalysts (e.g., Rh, Pt, Ru, Au …etc.). It leads to produce high production costs. It seems very a long way to go to develop highly active photocatalyst and photocatalyst compounds from non-precious elements.
(2) Electrocatalysis: Water electrolysis technology for H₂ production is vigorously developed. The operation of water electrolysis by excessive green electricity from wind, solar and hydropower is more and more feasible. A variety of electrocatalysts is available to use in the industrial scale. Therefore, number of commercial plants have been built, and are being built around the world. Soon, new emerging plants will enable water electrolysis as primary production for green hydrogen. However, it is not game over yet. To compete the conventional H₂ production, which mainly occupies the current H₂ market, research and development is further required to explore new catalysts and catalyst compounds, which are more active, highly stable and cheaper.

Acknowledgments

S. Khan would like to thank to International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University for internal financial support for his research work. V. Soum was supported by Higher Education Improvement Project (HEIP) funded by the Royal Government of Cambodia through Ministry of Education, Youth and Sports (IDA Credit No. 6221-KH). V. Soum would like to thank to the Kansai-Asia Platform of Advanced Analytical Technologies (KAPLAT) Program, Japan Society for the Promotion of Science, and Prof. Toshiharu Teranishi and his group for hosting his research visit to the Institute for Chemical Research, Kyoto University. Authors also would like to thank Dr. Jin-Sung Park at Massachusetts Institute of Technology for useful discussion and reading our manuscript.

Conflict of interest

There is no conflict of interest for this study.

References

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37-8. 10.1038/238037a0

Li J, Chen J, Fang H, Guo X, Rui Z. Plasmonic metal bridge leading Type III heterojunctions to robust Type B photothermalysts. Industrial & Engineering Chemistry Research. 2021;60(23):8420-8429. https://doi.org/10.1021/acs.iecr.1c01198

