FaceLite: A Real-Time Light-Weight Facemask Detection Using Deep Learning: A Comprehensive Analysis, Opportunities, and Challenges for Edge Computing
DOI:
https://doi.org/10.37256/cnc.2120244439Keywords:
facemask, CNN, deep learning, light-weight, transfer learningAbstract
The edge computing devices running models based on deep learning have drawn a lot of interest as a prominent way of handling various applications based on AI. Due to limited memory and computing resources, it is still difficult to deploy deep learning models on edge devices in a production context with effective inference. This study examines the deployment of a lightweight facemask detection model on edge devices with real-time inference. The proposed framework uses a dual-stage convolutional neural network (CNN) architecture with two main modules that use Caffe-DNN for face detection and a proposed model based on CNN architecture or customized models based on transfer learning (e.g., MobileNet-v2, resNet50, denseNet121, NASNetMobile, Inception-v3, and XceptionNet) for facemask classification. The study does numerous analyses based on the models' performance in terms of accuracy, precision, recall, and F1-score and compares all models with low disk size and good accuracy as the main priorities for memory-constrained edge devices. The proposed CNN model for facemask detection outperforms other state-of-the-art models in terms of accuracy, achieving 99%, 99%, and 99% on the training, validation, and testing, respectively, with the facemask detection ~12K image datasets available on Kaggle. This accuracy is comparable to other transfer learning-based models, and it also achieves the smallest number of total trainable parameters and, thus, the smallest disk size of all models.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anup Kumar Paul
This work is licensed under a Creative Commons Attribution 4.0 International License.